A Survey on Machine Learning Adversarial Attacks
Abstract
Keywords
Full Text:
PDFReferences
Polyakov, Alexander. "How to attack Machine Learning ( Evasion, Poisoning, Inference, Trojans, Backdoors)", Towards Data Science, 2019. Access: January 12th, 2020
NIST. "A Taxonomy and Terminology of 3 Adversarial Machine Learning", National Institute of Standards and Technology Interagency, Internal Report 8269, Eds: Elham Tabassi, Kevin J. Burns, Michael Hadjimichael, Andres D. Molina-Markham, Julian T. Sexton; October, 2019.
Biggio, B.; Roli, F. "Wild patterns: Ten years after the rise of adversarial machinelearning," Pattern Recognition, vol. 84, pp. 317-331, 2018. doi: 10.1016/j.patcog.2018.07.023
Akhtar, N.; Mian, A. "Threat of adversarial attacks on deep learning in computervision: A survey", IEEE Access, vol. 6, pp. 14410-14430, 2018.
Chakraborty, A.; Alam, M.; Dey, V.; Chattopadhyay, A.; Mukhopadhyay, D. "Adversarial Attacks and Defences: A Survey", 2018.
Liu, Q.; Li, P.; Zhao, W.; Cai, W.; Yu, S.; Leung, V. C. M. "A survey on security threats and defensive techniques of machine learning: A data driven view," IEEEaccess, vol. 6, pp. 12103-12117, 2018. doi: 10.1109/ACCESS.2018.2805680
Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M. P. "SoK: Security and privacy in machine learning", In: 2018 IEEE European Symposium on Security and Privacy(EuroS&P), London, 2018. doi: 10.1109/EuroSP.2018.00035
Pitropakis, Nikolaos; Panaousis, Emmanouil; Giannetsos, Thanassis; Anastasiadis,Eleftherios; Loukas, George. "A taxonomy and survey of attacks against machine learning", Computer Science Review, vol. 34, November 2019. doi: 10.1016/j.cosrev.2019.100199
Szegedy, Christian; Zaremba, Wojciech; Sutskever, Ilya; Bruna, Joan; Erhan, Dumitru; Goodfellow, Ian; Fergus,Rob. "Intriguing properties of neural networks", arXiv, 2014.
Goodfellow, Ian; Shlens, Jonathon; Szegedy, Christian. “Explaining and Harnessing Adversarial Examples”, 2014. arXiv 1412.6572.
Jo, Jason; Bengio, Yoshua. “Measuring the tendency of CNNs to Learn Surface Statistical Regularities”, 2017. arXiv 1711.11561.
Nelson, Blaine; Barreno, Marco; Chi, Fuching Jack; Joseph, Anthony D.; Rubinstein, Benjamin I. P.; Saini, Udam; Sutton, Charles; Tygar, J. D.; Xia, Kai. "Exploiting Machine Learning to Subvert Your Spam Filter", In: Proceedings of First USENIX Workshop on Large Scale Exploits and Emergent Threats, April 2008.
Liu, Yingqi; Ma, Shiqing; Aafer, Yousra; Lee, Wen-Chuan; Zhai, Juan; Wang, Weihang; Zhang, Xiangyu. "Trojaning Attack on Neural Networks", In: Network and Distributed System Security Symposium, 2018. doi: 10.14722/ndss.2018.23300
Lin, Yen-Chen; Hong, Zhang-Wei; Liao,Yuan-Hong; Shih, Meng-Li; Liu, Ming-Yu; Sun, Min. "Tactics of adversarial attack on deep reinforcement learning agents", 2017. arXiv:1703.06748.
Elsayed, Gamaleldin F.; Goodfellow, Ian; Sohl-Dickstein, Jascha. "Adversarial Reprogramming of Neural Networks", 2018. arXiv:1806.11146
Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. "Membership Inference Attacks Against Machine Learning Models", IEEE Symposium on Security and Privacy, 2017. doi: 10.1109/SP.2017.41
Fredrikson, Matthew; Jha, Somesh K; Ristenpart, Thomas. "Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures", In: CCS '15: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp.1322–1333,October 2015. doi: 10.1145/2810103.2813677
Tramèr, Florian; Zhang, Fan; Juels, Ari; Reiter, Michael K.; Ristenpart, Thomas. "Stealing Machine Learning Models via Prediction APIs", 25th Security Symposium (USENIX), 2016.
Dillow, Clay. "Anti-Surveillance Hoodie And Scarf Prevent Drones From Tracking You", In: Popular Science, Technoogy, 2013. Access on December 31th, 2019.
Cvdazzle. "Camouflage from face detection", 2010. , Access on December 31th, 2019.
Xu, Kaidi; Zhang, Gaoyuan; Liu, Sijia; Fan, Quanfu; Sun, Mengshu; Chen, Hongge; Chen, Pin-Yu; Wang, Yanzhi; Lin, Xue. "Adversarial T-shirt! Evading Person Detectors in A Physical World", 2019. arXiv:1910.11099
Thys, Simen; Van Ranst, Wiebe; Goedem, Toon. "Fooling automated surveillance cameras:adversarial patches to attack person detection", IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019. arXvi: 1904.08653
Yamada, Takayuki; Gohshi, Seiichi; Echizen, Isao. "Privacy Visor: wearable device for privacy protection based on differences in sensory perception between humans and devices", IWSEC - International Workshop on Security, 2012.
Sharif, Mahmood; Bhagavatula, Sruti; Bauer, Lujo; Reiter, Michael K. "Accessorize to a Crime: Real and Stealthy Attacks onState-of-the-Art Face Recognition", ACM Conference on Computer and Communications Security, 2016.
Thalen, Mikael. "Is this wearable face projector being used by Hong Kong protesters?", The Daily Dot, 2019. , Accessed on Jan 2nd, 2020.
Eykholt, Kevin; Evtimov, Ivan; Fernandes, Earlence; Li, Bo; Rahmati, Amir; Xiao, Chaowei; Prakash, Atul; Kohno, Tadayoshi; Song, Dawn. "Robust Physical-World Attacks on Deep Learning Visual Classification", IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. doi: 10.1109/CVPR.2018.00175
Mogelmose, A.; Trivedi, M.; Moeslund, T. "Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey", Trans. Intell. Transport. Syst. 2012, 3, 1484–1497. doi: 10.1109/TITS.2012.2209421
Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. "Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition", Neural Networks. 2012, 32, 323–332. doi: 10.1016/j.neunet.2012.02.016
Denil, Misha; Shakibi, Babak; Dinh, Laurent; "Predicting parameters in deep learning". In: Advances in Neural Information Processing Systems, pp. 2148–2156, 2013.
Wang, Beilun; Gao, Ji; Qi, Yanjun. "A theoretical framework for robustness of (deep) classifiers under adversarial noise, 2016. arXiv:1612.00334
Metzen, J. H.; Genewein, T.; Fischer, V.; Bischoff, B. "On detecting adversarial perturbations", Proceedings of 5th International Conference on Learning Representations (ICLR), 2017.
Feinman, R.; Curtin, R. R.; Shintre, S.; Gardner, A. B.. “Detecting adversarial samples from artifacts”, 2017. arXiv:1703.00410
Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; McDaniel, P. “On the (statistical) detection of adversarial examples”, 2017. arXiv:1702.06280
Hendrycks,D.; Gimpel, K. “Early methods for detecting adversarial images,” ICLR Workshop, 2017.
Huang, R.; Xu, B.; Schuurmans, D.; Szepesvári, C. "Learning with a strong adversary", 2015. arXiv:1511.03034
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; McDaniel, P. "Ensemble adversarial training: Attacks and defenses, 2017. arXiv:1705.07204
Hosseini, H.; Chen, Y.; Kannan, S.; Zhang, B.; Poovendran, R. "Blocking transferability of adversarial examples in black-box learning systems", 2017. arXiv:1703.04318
Biggio, B.; Nelson, B.; Laskov, P. !Support vector machines under adversarial label noise", In: Proceedings of the Asian Conference on Machine Learning, Taoyuan, Taiwan, 13–15 November 2011; pp. 97–112.
Lyu, C.; Huang, K.; Liang, H.N. 'A unified gradient regularization family for adversarial examples", In: Proceedings of the 2015 IEEE International Conference on Data Mining (ICDM), Atlantic City, pp. 301-309, 2015.
Zhao, Q.; Griffin, L.D. "Suppressing the unusual: Towards robust cnns using symmetric activation functions", 2016. arXiv:1603.05145
Rozsa, A.; Gunther, M.; Boult, T.E. "Towards robust deep neural networks with BANG", 2016. arXiv:1612.00138.
Xu, W.; Evans, D.; Qi, Y. "Feature squeezing: Detecting adversarial examples in deep neural networks", 2017. arXiv:1704.0115
Gu, S.; Rigazio, L. "Towards deep neural network architectures robust to adversarial examples", 2014. arXiv:1412.5068
Samangouei, P.; Kabkab, M.; Chellappa, R. "Defense-GAN: Protecting classifiers against adversarial attacks using generative models", 2018. arXiv:1805.06605
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. "Generative adversarial nets", In: Advances in Neural Information Processing Systems, Proceedings of the Annual Conference on Neural Information Processing Systems, 2013.
DOI: https://doi.org/10.17648/jisc.v7i1.76
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
This site is licensed with the Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional