Untappable Key Distribution System: a One-Time-Pad Booster
Abstract
The One-Time-Pad (OTP) protocol gives unconditional security
for the information being encrypted. Correctly implemented, not even
an adversary with a quantum computer can crack it. However, the need
of sharing in a secure way supplies of symmetric random keys turned the
method almost obsolete as a stand-alone method for fast and large volume
telecommunication. Basically, this secure sharing of keys and their
renewal, once exhausted, had to be done through couriers, in a slow and
costly process. This paper presents a solution for this problem providing a
fast and unlimited renewal of secure keys: An untappable key distribution
system is presented and detailed. This fast key distribution system utilizes
two layers of confidentially protection: 1) Physical noise intrinsic to the optical
channel that turn the coded signals into stealth signals and 2) Privacy
amplification using a bit pool of refreshed entropy run after run, to eliminate
any residual information. The resulting level of security is rigorously
calculated and demonstrates that the level of information an eavesdropper
could obtain is negligible. The random bit sequences, fast and securely
distributed, can be used to encrypt text, data or voice.
Keywords
Full Text:
PDFReferences
G. A. Barbosa, Physical Review A 68, 052307 (2003).
G. A. Barbosa, Physical Review A 71, 062333(2005).
G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, Physical Review
Letters 90, 227901-1 (2003).
O. Hirota, K. Ohhata, M. Honda, S. Akutsu, K. Harasawa, and K. Yamashita,
SPIE Newsroom 10.1117/2.1200909.1679 (2009).
F. Grosshans and P. Grangier, Phys. Rev. Lett. 88, 057902 (2002).
G. A. Barbosa and J. van de Graaf, “Untappable communication
channels over optical fibers from quantum-optical noise”,
http://eprint.iacr.org/2014/146 .
A. Messiah, “M´ecanique Quantique” Vol. II, Chapter XIII (Dunod 1965).
There are true physical random generators in the market. The one planned
for this key distribution system was specially designed to operate at a fast
speed compatible with optical communication rates. It is discussed in G. A.
Barbosa, ENIGMA - Brazilian J. of Information Security and Cryptography,
Vol. 01 (2013)– to be published.
T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R.
J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J.
E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer and H. Dardy, New
Journal of Physics 11, 105001 (2009).
G. A. Barbosa, QuantaSEC - Technical Notes – Modulation and Demodulation
systems, Feb. 2104.
T. Iwata and K. Kurosawa, FIPS PUB 198 (2002) (Federal Information
Processing Standards Publication), The Keyed- Hash
Message Authentication Code (HMAC), and Natl. Inst. Stand.
Technol. Spec. Publ. 800-38B (May 2005) CODEN: NSPUE2, in
http://csrc.nist.gov/publications/nistpubs/index.html#sp800-38B.
M. A Nielsen and I. L. Chuang, “Quantum Computation and Quantum
Information”, Cambridge University Press 2005.
R. J. Glauber, Physical Review 131, 2766-2788 (1963).
C.H. Bennett, G. Brassard, C. Crepeau, U.M. Maurer, IEEE Transactions
on Information Theory 41, 1915 - 1923 (1995).
G. A. Barbosa, QuantaSEC Technical Notes, KeyBITS Platform 2104.
M. Born and E. Wolf, “Principles of Optics” (Pergamon Press, Sixth Edition,
, Section 10.8.3.
P. Carruthers and M. M. Nieto, Reviews of Modern Physics 40, 411
(1968).
R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis, Phys. Rev. A
, 040305(R)(2001). S. M. Barnett and E. Riis, J. Mod. Optics 44, 1061
(1997).
B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and N. Gisin, Phys. Rev.
A 54, 3783 (1996).
L. L. S´anchez-Soto, A B Klimov, P. de la Hoz and G. Leuchs,
arXiv:1306.0351v1 [quant-ph] 3 Jun 2013.
DOI: https://doi.org/10.17648/enig.v2i1.43
Refbacks
- There are currently no refbacks.
This site is licensed with the Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional