Unconditionally Secure Quantum Communications Via Decoherence-Free Subspaces
Abstract
We show how to use decoherence-free subspaces over collective-noise quantum channels to convey classical information in perfect secrecy. We argue that codes defined over decoherence-free subspaces are codes for quantum wiretap channels in which the gain of information by a non-authorized third part is zero. We also show that if some symmetry conditions are guaranteed, the maximum rate on which such secret communications take place is equal to the ordinary capacity of a quantum channel to convey classical information. As a consequence of these results, we show how some protocols for secure communication can be simplified, reducing significantly the number of communications performed.
Keywords
Full Text:
PDF (Português (Brasil))References
M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, Springer, Ed. Springer, 2007.
N. Cai, A. Winter, and R. W. Yeung, “Quantum privacy and quantum wiretap channels,” Problems of Information Transmission, vol. 40, pp. 318–336, 2004.
I. Devetak, “The private classical capacity and quantum capacity of a quantum channel,” IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 44 –55, 2005.
M. S. Byrd, L.-A. Wu, and D. A. Lidar, “Overview of quantum error prevention and leakage elimination,” Journal of Modern Optics, vol. 51, no. 16-18, pp. 2449–2460, 2004.
D. A. Lidar and K. B. Whaley, “Decoherence free subspaces and subsystems,” arXiv:quant-ph/0301032v1, pp. 83–120, 2003.
G. Bin, P. ShiXin, S. Biao, and Z. Kun, “Deterministic secure quantum communication over a collective-noise channel,” Science in China Series G: Physics, Mechanics and Astronomy, vol. 52, no. 12, pp. 1913–1918, 2009.
K. Majgier, H. Maassen, and K. Zczkowski, “Protected subspaces in quantum information,” Quantum Inf. Process, vol. 9, pp. 343–367, 2010.
M. S. Byrd, D. A. Lidar, L.-A. Wu, , and P. Zanardi, “Universal leakage elimination,” Phys. Rev. A, vol. 71, p. 052301, 2005
S. Qin, Q. Wen, L. Meng, and F. Zhu, “Quantum secure direct communication over the collective amplitude damping channel,” Science in China Series G: Physics, Mechanics and Astronomy, vol. 52, no. 8, pp. 1208–1212, 2009.
H.-K. Dong, L. Dong, X.-M. Xiu, and Y.-J. Gao, “A deterministic secure quantum communication protocol through a collective rotation noise channel,” Int. J. of Quantum Inf., vol. 8, no. 8, pp. 1389–1395, 2010.
L. Viola, E. M. Fortunato, M. A. Pravia, E. Knill, R. Laflamme, and D. G. Cory, “Experimental realization of noiseless subsystems for quantum information processing,” Science, vol. 293, pp. 2059–2063, 2001.
A. Beige, D. Braun, B. Tregenna, and P. Knight, “Quantum computing using dissipation to remain in a decoherence-free subspace,” Phys. Rev. Lett., vol. 85, p. 1762, 2000.
D. Kielpinski, “A decoherence-free quantum memory using trapped ions,” Science, vol. 291, p. 1013, 2001.
P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science, vol. 290, pp. 498–501, 2000.
B. Schumacher and M. Westmoreland, “Quantum privacy and quantum coherence,” Phys. Rev. Lett., vol. 80, no. 25, pp. 5695–5697, 1998.
A. D. Wyner, “The wire-tap channel,” The Bell System Technical Journal, vol. 1, pp. 1355–1387, 1975.
A. Shabani and D. Lidar., “Theory of initialization-free decoherence- free subspaces and subsystems,” Phys. Rev. A, vol. 72, p. 042303, 2005.
D. M. Bacon, “Decoherence, control, and symmetry in quantum computers,” Ph.D. dissertation, University of California at Berkeley, 2001.
L.-M. Duan and G.-C. Guo, “Quantum error avoiding codes versus quantum error correcting codes,” Phys. Lett. A, vol. 255, pp. 209–212, 1999.
P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett., vol. 79, p. 3306, 1997.
B. Schumacher and M. D. Westmoreland, “Sending classical information via noisy quantum channels,” Phys. Rev. A, vol. 56, pp. 131–138, 1997.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, C. U. Press, Ed. Bookman, 2010.
D. Mayers, “Unconditional security in quantum cryptography,” Journal of the ACM, vol. 48, no. 3, pp. 351–406, 2001.
G. Lu Long, F. Guo Deng, C. W. X. Han Lo, K. Wen, and W. Ying Wang, “Quantum secure direct communication and deterministic secure quantum communication,” Front. Phys. China, vol. 2, no. 3, pp. 251– 272, 2007.
F. L. Yan and X. Q. Zhang, “A scheme for secure direct communication using EPR pairs and teleportation,” Eur. Phys. J. B, vol. 41, pp. 75–78, 2004.
M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ““Eventready- detectors” bell experiment via entanglement swapping,” Phys. Rev. Lett., vol. 71, p. 4287, 1993.
T. Gao, “Controlled and secure direct communication using GHZ state and teleportation,” Z. Naturforsch, vol. 59, p. 597, 2004.
T. Gao, F.-L. Yan, and Z.-X. Wang, “Controlled quantum teleportation and secure direct communication,” Chinese Phys., vol. 14, p. 893, 2005.
F. G. Deng and G. L. Long, “Secure direct communication with a quantum one-time pad,” Phys. Rev. A, vol. 69, p. 052319, 2004.
A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct
communication based on secret transmitting order of particles,” Phys. Rev. A, vol. 73, p. 022338, 2006.
R. de Wolf, “Quantum communication and complexity,” Theoretical Computer Science, vol. 287, no. 1, pp. 337–353, 2002.
U. Dorner, A. Klein, and D. Jaksch, “A quantum repeater based on decoherence free subspaces,” Quant. Inf. Comp., vol. 8, p. 468, 2008.
G. Jaeger and A. Sergienko, “Constructing four-photon states for quantum communication and information processing,” Int. J. Theor. Phys., vol. 47, p. 2120, 2008.
Y. Xia, J. Song, Z.-B. Yang, and S.-B. Zheng, “Generation of fourphoton polarization-entangled decoherence-free states within a network,” Appl. Phys. B, vol. 99, pp. 651–656, 2010.
P. Xue, “Long-distance quantum communication in a decoherence-free subspace,” Phys. Lett. A, vol. 372, pp. 6859–6866, 2008
DOI: https://doi.org/10.17648/enig.v1i1.13
Refbacks
- There are currently no refbacks.
This site is licensed with the Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional