
ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019 15

Abstract— This paper describes a symmetrical block cipher

family – FlexAEAD v1.1. This is an updated version of the work

presented as round 1 candidate on the contest for NIST

lightweight crypto standardization process. It was engineered to

be lightweight, consuming less computational resources than

other ciphers and to work with different block and key sizes.

Other important characteristic is to integrate the authentication

on its basic algorithm. This approach is helps to reduce the

resource needs. The algorithm capacity to resist against linear

and different cryptanalysis attacks was evaluated. The

FlexAEAD also supports the authentication of the Associated

Data (AD). The version 1.1 makes the algorithm resistant to

iterated differential attacks. It also resolves a padding attack on

the AD that allowed messages to have the same tag if the last AD

block was filled with zeros.

Index Terms— authenticated encryption, lightweight, NIST

LWC

I. INTRODUCTION

N August 2018, the National Institute of Standards and

Technology (NIST) published call for algorithm (NIST,

2018) describing the contest and requirements for a new

lightweight authenticated encryption with associated data

(AEAD) algorithm and an optional hash algorithm.

The FleaxAEAD algorithm family was inscribed in the

contest and analyzed by several researchers. The cipher

family is an evolution of the FlexAE algorithm presented at

IEEE ICC2017 (Paris – France) and SBSEG2018 (Natal –

Brazil). The first difference is the capacity to allow the

validation of an associated data together with the encrypted

data. The new family also resolved a reorder block attack.

During NIST contest first round, independent researchers

found a weakness related to the associated data padding and

an iterated differential attack. The weakness were solved and

resulted on the cipher version 1.1.

This specification and security claims for the cipher

variations were revised and they are presented on this paper.

The cipher source code is available on the URL

https://github.com/edunasci/FlexAEAD.

1 Eduardo Marsola do Nascimento, Petróleo Brasileiro S.A. – Petrobras,

Rio de Janeiro, RJ (email: edunasci@yahoo.com).

2 José Antônio Moreira Xexéo, Instituto Militar de Engenharia, Rio de

Janeiro, RJ (email: xexeo@ime.eb.br).

II. ALGORITHM DESCRIPTION

The FleaxAEAD algorithm uses as a main component a key

dependable permutation function (𝑃𝐹𝐾). On this function, the

block is XORed with a key 𝐾𝐴 at the beginning and with a key

𝐾𝐵 at the end of the process. This function (𝑃𝐹𝐾) is invertible

(𝐼𝑁𝑉𝑃𝐹𝐾), so the process can be reversed (1).

Fig. 1. The permutation function 𝑃𝐹𝐾 and its inverse 𝐼𝑁𝑉𝑃𝐹𝐾.

On the (𝑃𝐹𝐾), after the XOR with 𝐾𝐴, the block is

transformed by a shuffle layer, where a nb bytes input is

reordered as (b[0], b [
nb

2
] , b[1], b [

nb

2
+ 1] , … , b [

nb

2
− 1] ,

b[nb − 1].

Fig. 2. The Shuffle Layer.

1 This function were rewritten to avoid an efficient iterated

truncated differential attacks proposed by Mostafizar Rahman,

Dhiman Saha and Goutam Paul during the contest discussions.

FlexAEAD v1.1 -A Lightweight AEAD Cipher

with Integrated Authentication

Eduardo Marsola do Nascimento1, José Antônio Moreira Xexéo2

O

16 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019

After the shuffle Layer, the input is divided in quarters and

the mix quarters layers combine them together. Considering

the quarters (𝐴, 𝐵, 𝐶, 𝐷) as input, the output will be (𝐵 ⊕ 𝐶 ⊕
𝐷, 𝐴 ⊕ 𝐶 ⊕ 𝐷, 𝐴 ⊕ 𝐵 ⊕ 𝐷, 𝐴 ⊕ 𝐵 ⊕ 𝐶). The function is its

own inverse, if the output is submitted again to the function, it

will generate the original input. A difference on one byte will

generate differences in 3 bytes, in different quarters.

Fig. 3. Mix Quarters Layer.

The next is the SBox layer, where each quarter suffers a non-

linear transformation using a different SBox. The first SBox

is the AES SBox, the other SBoxes are generate using the

process as the first (multiplicative inverse on the 𝐺𝐹28) using

different irreducible polynomial (IP), multiplicative constant

(MC) and additive constants (A).

TABLE I

Parameters used to create FlexAEAD SBoxes

SBox IP MC AC

SBox0
𝑥8 + 𝑥4 + 𝑥3 + 𝑥1 + 1

(0b100011011)
0x1F 0x63

SBox1
𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1

(0b100011101)
0x3D 0x95

SBox2
𝑥8 + 𝑥5 + 𝑥3 + 𝑥1 + 1

(0b100101011)
0x3B 0xA6

SBox3
𝑥8 + 𝑥5 + 𝑥3 + 𝑥2 + 1

(0b100101101)
0x37 0xD9

The SBox Layer can be inverted using the reverse AES SBox.

On the appendices the SBoxes direct and reverse tables can be

found.

Fig. 4. The SBox Layer.

The number of rounds (𝑟) on this construction is 𝑟 =
log2 𝑛𝑏, where 𝑛𝑏=block size in bytes. This number of rounds

is the minimum to assure that any bit change on the input the

block will affect all bits on the output. The number of rounds

grows logarithmic with the block size, keeping the number of

CPU cycles needed to process small even if working with

bigger block sizes. The key dependable permutation function

and its inverse can also be described on the pseudo code on

the Figure 5.

Fig. 5. The key dependable permutation function and its inverse.

The FlexAEAD cipher uses four subkeys (𝐾1, 𝐾2, 𝐾3, 𝐾4).

They are created from a bit sequence generated by applying

the permutation function three times using the main key 𝐾

(𝑃𝐹𝐾) until have enough bits for all subkeys. The initial value

is a sequence of zeros (0𝑘𝑠/2). Each subkey (𝐾1, 𝐾2, 𝐾3, 𝐾4)

size is 2 × nb, which is double the block size in bytes (or

16 × 𝑛𝑏 in bits). The main key 𝐾 size is 128 ×
2x bits , where x ≥ 0. The maximum size of the main key is

two times the blocksize. This limit was imposed to force each

subkey to be composed by a sequence that went by the process

at least twice. The number of times the permutation function is

applied has been chosen to have the similar resistance to linear

and differential cryptanalysis attacks on the subkey generation

as on encrypting a block.

The FlexAEAD also uses a sequence of bits (𝑆0𝑆1 … 𝑆𝑛+𝑚).

This sequence is the same size of the associated data plus the

message to be sent. It is generate by applying 𝑃𝐹𝐾3 over the

NONCE to generate a base counter. The counter is divided in

32 bits chunks of data. Each chunk is treated as an unsigned

number (little -endian) that is added with the constant

0x11111111 for every block of the sequence by the function

INC32(2). If the counter for a 64 bit block has the following

bytes (x01,x02,x03,x04,xFF,x01,x02,x03), after the INC32

function, the result is (x12,x13,x14,x15,x10,x14,x13,x14).

The sequence will be unique for every NONCE. The chance

of occurring overlapping sequences for two different NONCE

2 On the original cipher the constant added was 0x1 but it allowed a

differential attack proposed by Maria Eichlseder, Daniel Kales and Markus

Schofnegger.

𝑖𝑛𝑣𝑃𝐹(𝐼𝑁𝑃𝑈𝑇[𝑛𝑏], 𝐾[𝑛𝑘])

𝐾𝐴 = 𝐾 [1. . (
𝑛𝑘

2
)]

𝐾𝐵 = 𝐾 [(
𝑛𝑘

2
+ 1) . . 𝑛𝑘]

𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑁𝑃𝑈𝑇 ⊕ 𝐾𝐵
for (i =1 to log(nb)]
 state = MixQuartersLayer(state)
 state = invShuffleLayer(state)
 state = invSBoxLayer(state)
end for
𝑂𝑈𝑇𝑃𝑈𝑇 = 𝑠𝑡𝑎𝑡𝑒 ⊕ 𝐾𝐵

𝑑𝑖𝑟𝑃𝐹(𝐼𝑁𝑃𝑈𝑇[𝑛𝑏], 𝐾[𝑛𝑘])

𝐾𝐴 = 𝐾 [1. . (
𝑛𝑘

2
)]

𝐾𝐵 = 𝐾 [(
𝑛𝑘

2
+ 1) . . 𝑛𝑘]

𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑁𝑃𝑈𝑇 ⊕ 𝐾𝐴
for (i =1 to log(nb)]
 state = ShuffleLayer(state)
 state = MixQuartersLayer(state)
 state = dirSBoxLayer(state)
end for
𝑂𝑈𝑇𝑃𝑈𝑇 = 𝑠𝑡𝑎𝑡𝑒 ⊕ 𝐾𝐵

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019 17

is nonsignificant. Considering the maximum sie of the

sequence is 232, for a 64 bits NONCE, there are 232 non-

overlapping sequences, so the probability of choosing two

NONCEs with overlapping sequences is 2−64 (𝑝𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 =

2−32 × 2−32 = 2−64). For a 128 bits NONCE, there are 296

non-overlapping sequences, so the probability is 2−192.

Another important characteristic is the fact that the

sequence generation can run in parallel for every block. The

function INC32 can add an arbitrary number to the base

counter. On a multi-thread environment, the S0 can be

generate adding 0x11111111 to the base counter and in a

parallel thread the S0 can be generate adding 0xBBBBBBBB

(or 0𝑥𝐵 × 0x11111111) to the base counter. This allows the

cipher to use multiples processors or core if available. The

sequence can be generated during the process of hashing the

associate data or encrypting a data block, avoiding

unnecessary memory allocation.

Fig. 6. The K0,K1,K2 and S0S1…Sm+n generation processes.

To hash the associate data, first the associated data is

divided in n blocks (𝐴𝐷0𝐴𝐷1 … 𝐴𝐷𝑛−1). The final block is

padded with 10…0 bits (3). Each block (𝐴𝐷𝑥) is XORed with

the correspondent (𝑆𝑥) block and it is submitted to 𝑃𝐹𝐾2 to

generate a intermediate state block (𝑠𝑡𝑥). The process that

each associated data block goes though is (𝐴𝐷𝑥 →
𝑋𝑂𝑅(𝑠𝑥) → 𝑃𝐹𝐾2 → 𝑠𝑡𝑥). If the last block has been padded,

the function 𝑃𝐹𝐾2 is applied twice: (𝐴𝐷𝑥(𝑝𝑎𝑑𝑑𝑒𝑑) →

𝑋𝑂𝑅(𝑠𝑥) → 𝑃𝐹𝐾2 → 𝑃𝐹𝐾2 → 𝑠𝑡𝑥).

The (𝑆𝑛) block is submitted to 𝑃𝐹𝐾2 twice to generate a

intermediate state block (𝑆𝑛 → 𝑃𝐹𝐾2 → 𝑃𝐹𝐾2 → (𝑠𝑡𝑛) . This

operation was included4 to avoid having the same tag, for

different NONCEs, when both AD and M are empty. Another

reason is to avoid having the same tag for

3 The original cipher permitted the forgery extended length attack. The

actual version solved the problem by using a resistant padding as suggested by

by Alexandre Mège.

4 Both problems where pointed by Maria Eichlseder on NIST LWC

discussion forum.

(𝑁, 𝐴0…𝑛−1||𝑃0, 𝑃1…𝑚−1) and (𝑁, 𝐴0…𝑛−1, 𝑃0…𝑚−1).

To cipher the plain text message, it is broken into 𝑚

plaintext blocks (𝑃0𝑃1 … 𝑃𝑚−1). The last block is padded with

(10𝑝𝑏−1), where 𝑝𝑏 is the number of padding bits to complete

the block.

Each block (𝑃𝑥) is XORed with the correspondent (𝑆𝑥)

block and it is submitted to 𝑃𝐹𝐾2 to generate a intermediate

state block (𝑠𝑡𝑥). The state (𝑠𝑡𝑥) is submitted to 𝑃𝐹𝐾1,

XORed again with (𝑆𝑥) and finally submitted to 𝑃𝐹𝐾0to

generate a ciphertext block (𝐶𝑥). The process that each

plaintext block goes though is (𝑃𝑥 → 𝑋𝑂𝑅(𝑠𝑥) → 𝑃𝐹𝐾2 →
𝑠𝑡𝑥 → 𝑃𝐹𝐾1 → 𝑋𝑂𝑅(𝑆𝑥) → 𝑃𝐹𝐾0 → 𝐶𝑥). It is important to

observe that if the plaintext or associate data blocks are

swapped in position, the generated checksum will be

modified. This characteristic prevents reordering data attacks.

All intermediate state blocks are XORed together to

generate a checksum. If the last message block was padded,

the checksum is XORed with the bit sequence(1010 … 10). If

there was no padding it is XORed with the bit

sequence (0101 … 01). After it the result is submitted to 𝑃𝐹𝐾0

function to generate the TAG used for authentication. The

TAG length (𝑇𝑙𝑒𝑛) can be smaller than the block size, if it is

adequate to the application. This is done by truncating the

TAG on its 𝑇𝑙𝑒𝑛 more significant bits (𝑀𝑆𝐵𝑇𝑙𝑒𝑛).

Fig. 7. The FlexAEAD encryption diagram.

For decryption, first the Associated Data is submitted to the

same process as in encryption (𝐴𝐷𝑥 → 𝑋𝑂𝑅(𝑠𝑥) → 𝑃𝐹𝐾2 →
𝑠𝑡𝑥) or (𝐴𝐷𝑥(𝑝𝑎𝑑𝑑𝑒𝑑) → 𝑋𝑂𝑅(𝑠𝑥) → 𝑃𝐹𝐾2 → 𝑃𝐹𝐾2 → 𝑠𝑡𝑥).

The (𝑆𝑛) block is submitted to 𝑃𝐹𝐾2 twice (𝑆𝑛 → 𝑃𝐹𝐾2 →
𝑃𝐹𝐾2 → (𝑠𝑡𝑛). The Ciphertext is broken into blocks and the

TAG is separated (as its size is known, the last part of the

ciphertext is the TAG). The cipher text blocks are submitted

to a reverse process (𝐶𝑥 → 𝐼𝑁𝑉𝑃𝐹𝐾0 → 𝑋𝑂𝑅(𝑆𝑥) →
𝐼𝑁𝑉𝑃𝐹𝑘1 → 𝑠𝑡𝑥 → 𝐼𝑁𝑉𝑃𝐹𝐾2 → 𝑃𝑥).

During the decryption process all (𝑠𝑡𝑥) are XORed

together. This checksum is XORed with bit sequence

(1010 … 10) then submitted to (𝑃𝐹𝐾0) to generate a TAG’. If

the TAG’ is equal to the received TAG, the message is valid

and the original plaintext was not padded. If it is different the

checksum is XORed with bit sequence (0101 … 01) then

submitted to (𝑃𝐹𝐾0) to generate a TAG’’. If the TAG’’ is

equal to the received TAG, the message is valid and the

original plaintext was padded. If neither calculated TAGs are

18 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019

equal to the received TAG, the message is invalid and it is

discarded.

Fig. 8. The FlexAEAD decryption diagram.

III. KEY AND BLOCK SIZE SELECTION

Although the FlexAEAD algorithm family allows several

block and key size. A few variant were selected as concrete

examples for the NIST contest.

The family also allows the user to select the tag, used to

validate the message, and nonce size. For this contest they will

be the maximum allowed, depending on the variant. The

maximum for them is the same as the block size for each

variant.

The chosen variants are:

FlexAEAD128b064 – 128 bits key, 64 bits block, 64 bits

nonce and 64 bits tag sizes

FlexAEAD128b128 – 128 bits key, 128 bits block, 128 bits

nonce and 128 bits tag sizes

FlexAEAD256b128 – 256 bits key, 128bits block, 128 bits

nonce and 128 bits tag sizes

FlexAEAD256b256 – 256 bits key, 256 bits block, 256 bits

nonce and 256 bits tag sizes

These variants were implemented and the NIST test vectors

were successfully generated for them.

IV. DIFFERENTIAL CRYPTANALYSIS

The differential cryptanalysis (BIHAM and SHAMIR,

1991) technique consists on analyzing of the probabilities of

the differences on the cipher SBoxes inputs and outputs.

The differential and the linear cryptanalysis of the FlexAEAD

are similar to the analysis performed on the algorithm FlexAE

(NASCIMENTO and XEXEO, 2018). The differences are the

number of rounds and the inclusion of the function mix

adjacent bytes.

To analyze the differences of a specific SBox construction,

a difference distribution table (DDT) is created. To create this

table the input differences (Δ𝑋 = 𝑋′ ⊕ 𝑋′′) and the output

differences (Δ𝑌 = 𝑌′ ⊕ 𝑌′′) are calculated for every possible

input pair (𝑋′, 𝑋′′). The table columns are Δ𝑌 values and the

lines are ΔX. Each cells contains the number of times that Δ𝑋

generates Δ𝑌. Exemplifying, considering the AES SBox,

The difference distribution table for AES SBox shows that

the maximum probability for any pair (ΔX ≠ 0, ΔY ≠ 0) is

𝑝 =
4

256
= 2−6.

To encrypt each ciphertext block the 𝑃𝐹𝐾 is executed at

least 3 times (𝑃𝑥 → 𝑋𝑂𝑅(𝑠𝑥) → 𝑃𝐹𝐾2 → 𝑠𝑡𝑥) → 𝑃𝐹𝐾1 →
𝑋𝑂𝑅(𝑆𝑥) → 𝑃𝐹𝐾0 → 𝐶𝑥). The number of rounds depends on

the block size in bytes (𝑟 = log2 𝑛𝑏). The total of rounds for

block sizes of 64, 128 and 256 bits are respectively 9, 12 and

15.

For a 64 bits block size: if the 1st round has 1 active SBox5,

the 2nd round will have 3 active SBoxes; the 3rd round will

have 7 SBoxes; and from 4th round on, there will have 8

active SBoxes per round. On (r-1) or 8 rounds, there is 51

active Sboxes: 𝑛𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑏𝑜𝑥𝑒𝑠 = 1 + 3 + 7 + (5 × 8) = 51.

Fig. 9. Active sboxes after 4 rounds for 64 bits bock size.

For a 128 bits block size: if the 1st round has 1 active SBox,

the 2nd round has a minimum of 3 active SBoxes; the 3rd

round will have 7 active SBoxes; the 4th round – 15 active

SBoxes; and from 5th round on, there will be 16 active SBoxes

per round. On (r-1) or 11 rounds, there is 138 active Sboxes:

𝑛𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑏𝑜𝑥𝑒𝑠 = 1 + 3 + 7 + 15 + (7 × 16) = 138.

5 On the first round it is possible to control the input difference to force

only one 1 active SBox.

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019 19

Fig. 10. Active sboxes after 5 rounds for 128 bits bock size.

For a 256 bits block size: there is 26 active SBoxes from

round 1 to 4; the 5th round - 31 active SBoxes; from the 6th

round on, there is 32 active SBoxes. On (r-1) or 14 rounds,

there is 336 active Sboxes: 𝑛𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑏𝑜𝑥𝑒𝑠 = 26 + 31 +
(9 × 32) = 336.

Fig. 11. Active sboxes after 6 rounds for 256 bits bock size.

The maximum probability can be calculated by 𝑝𝐷 =

 ∏ 2−6(𝑛𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑏𝑜𝑥𝑒𝑠)
𝑖=1 and the difficult of an attack based on

differential cryptanalysis is 𝑁𝐷 ≅
1

𝑃𝐷
 (Heys, 2001).

TABLE II

Difficult to perform a differential cryptanalysis attack

Block Size Rounds (r-1)
Active

SBoxes
𝑝𝐷 𝑁𝐷

64 8 51 2−306 2306

128 11 138 2−828 2828

256 14 336 2−2016 22016

An attack based on a differential cryptanalysis is more

difficult than a brute force attack in all cases.

V. LINEAR CRYPTANALYSIS

The linear cryptanalysis (MATSUI, 199 3) technique

consists in evaluating the cipher using linear expressions to

approximate the cipher results and calculating their biases of

being true or false. The higher the bias, the easier is to uncover

the key bits.

For AES SBox there are a total of 65025 possible linear

expressions. The maximum bias on these expression is 𝜖 =
16

256
= 2−4.

After calculating the bias for every SBox, the next step is to

verify the cipher structure effect and determine the best linear

expressions for each round. In this stage it is easier to

represent the linear expressions in graphic way. The following

has a graphical representation of a linear approximation for all

5 rounds of the 𝑃𝐹𝐾 using 64 bits block size.

The complexity of an attack is determined by the number of

chosen plaintext pair (𝑁𝐿) which can be calculate from the

bias 𝑁𝐿 =
1

𝜖2 (HEYS, 2001). On the linear cryptanalysis, if the

number of active SBox is known (𝑛), the bias (𝜖) can be

determined subtracting (0.5) from the probability (𝑝)

calculated using the Piling-up Lemma p =
1

2
+

 2n−1 ∏ (pi −
1

2
)n

i=1 (MATSUI,1993): 𝜖 = 𝑝 − 0.5.

The number of active SBoxes on the linear cryptanalysis

can be considered the same as the differential cryptanalysis

per round due to the cipher its internal structure and the effect

of the mix adjacent bytes function.

TABLE III

Difficult to perform a linear cryptanalysis attack

Block Size Rounds (r)
Active SBox
(r rounds)

Maximum
Bias

𝑁𝐿 =
1

𝜖2

64 9 59 𝜖 = 2−178 𝑁𝐿 = 2356

128 12 154 𝜖 = 2−463 𝑁𝐿 = 2926

256 15 368 𝜖 = 2−1105 𝑁𝐿 = 22210

An attack based on a linear cryptanalysis is more difficult

than a brute force attack, making it impractical.

VI. USING THE CIPHER TO GENERATE A PSEUDORANDOM

SEQUENCE

The cipher was used to encrypted a block full of zeros again

and again with the same key. The resulted were submitted to

the dieharder toll. The sequence passed on all tests except on

a few that it randomly presented as “WEAK”. If the NONCE

or the KEY is changed or only that test is repeated, the test

returned PASSED. This indicates that it is not possible to infer

any pattern from the generated sequence. The test was

performed on all four variants of the cipher presented on this

document (FlexAEAD128b064, FlexAEAD128b128,

FlexAEAD256b128 and FlexAEAD256b256). The code used

to generate the sequence for the dieharder tool is on the

appendices.

VII. CIPHER FAMILY PERFORMANCE

The FlexAEAD family has inherited several functions from

the FlexAE family, which presented good time performance in

20 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019

CPU cycles and RAM (NASCIMENTO and XEXEO,2017),

when compared to other cipher. Although it is expected the

FlexAEAD performance won’t be as good as to FlexAE, new

tests will be necessary to evaluate the new family

performance.

The main reason for the difference was the inclusion of a

second XOR of the encrypting block with the 𝑆𝑥 and another

execution of the 𝑃𝐹𝐾 function. These modifications were

necessary to avoid a reordering data attack.

The FlexAEAD cipher family uses only simple function

like XOR, lookup table, for SBox Layer, or bits

reorganization, for block shuffle layer. The block shuffle layer

is simple to be implemented in hardware and it is expected to

have a great performance (basically only wires changing the

bits positions). The function in software is not optimized for

large word processors like 64 bits. But these high end

processors normally have multiples cores that can be used in

parallel due to the cipher characteristics, compensating the

deficiency.

For the FlexAE, the FELICS framework from

CRYPTOLUX research group were used, but it was compared

to non-authenticated block ciphers like AES. This time the

SUPERCOP tool (BERNSTEIN and LANGE) was used and

the FlexAEAD implementations were compared to the

following CAESAR (BERNSTEIN) finalist implementations

that were available at the SUPERCOP package: ascon128v11

(ASCON cipher), acorn128v3 (ACORN cipher), aegis128l

(AEGIS-128 cipher) and deoxysi128v141 (Deoxys-II cipher).

For the FlexAEAD, the eBAEAD - ECRYPT

Benchmarking of Authenticated Ciphers from supercop

framework (Bernstein, 2019) was used to compare the

implementations with NIST LWC round2 candidates. A

virtual machine with 2 dedicated processors (AMD EPYC

7501@2GHz) running Linux Ubuntu 19.10 was used to

evaluate the performance. In total, 92 implementations were

compared. The measure was done twice and the median was

used for comparison.

The median time for encrypt 2048 bytes message with 2048

bytes associate data for the variants FlexAEAD128b064,

FlexAEAD128b128, FlexAEAD256b128 and

FlexAEAD256b256 are respectively 340206, 313413, 314486

and 223220 cpu cycles. It position against the other ciphers

were 41st, 37th, 36th and 33rd. The FlexAEAD256b256

implementation is 8.7 times slower than the fastest

implementation (ascon128av12 – 25643) but 95.2 faster than

the slowest implementation compared (elephant160v1 -

21242710). The complete table with the comparison is

available on the appendixes.

VIII. CONCLUSION

This paper describes the FlexAEAD cipher family. This

cipher was tailored to be lightweight and flexible. Its security

was analyzed for three variants with concrete values against

linear and differential cryptanalysis attacks. The result is

summarized on Table 4. Their capacity to generate a

pseudorandom sequence was also confirmed using the

dieharder tool.

TABLE IV

Difficult to perform a differential cryptanalysis attack

Variant Parameters sizes (in bits)
Cryptanalysis

difficulty

Key Block Nonce Tag Linear Differential

FlexAEAD128b064 128 64 64 64 2306 2356

FlexAEAD128b128 128 128 128 128 2828 2926

FlexAEAD256b128 256 128 128 128 2828 2926

FlexAEAD256b256 256 256 256 256 22016 22210

The cipher performance, was evaluated comparing its 4

variant against the 32 ciphers selected for round 2 of the NIST

LWC contest. The tests show the FlexAEAD variants are

faster than half of the implementations. One performance

advantage is its capacity to allow parallel computing, each

block can be calculated by a different thread in any order. This

characteristic is an advantage when using multicore

processors.

For future works, the cipher implementation should be

optimized to increase the performance. The cipher should also

be implemented in hardware and compared to the other

ciphers.

APPENDIX A – DIRECT AND INVERSE SBOXES

Direct SBox0 (AES SBox)

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -
6
3

7
C

7
7

7
B

F
2

6
B

6
F

C
5

3
0

0
1

6
7

2
B

F
E

D
7

A
B

7
6

1 -
C
A

8
2

C
9

7
D

F
A

5
9

4
7

F
0

A
D

D
4

A
2

A
F

9
C

A
4

7
2

C
0

2 -
B
7

F
D

9
3

2
6

3
6

3
F

F
7

C
C

3
4

A
5

E
5

F
1

7
1

D
8

3
1

1
5

3 -
0
4

C
7

2
3

C
3

1
8

9
6

0
5

9
A

0
7

1
2

8
0

E
2

E
B

2
7

B
2

7
5

4 -
0
9

8
3

2
C

1
A

1
B

6
E

5
A

A
0

5
2

3
B

D
6

B
3

2
9

E
3

2
F

8
4

5 -
5
3

D
1

0
0

E
D

2
0

F
C

B
1

5
B

6
A

C
B

B
E

3
9

4
A

4
C

5
8

C
F

6 -
D
0

E
F

A
A

F
B

4
3

4
D

3
3

8
5

4
5

F
9

0
2

7
F

5
0

3
C

9
F

A
8

7 -
5
1

A
3

4
0

8
F

9
2

9
D

3
8

F
5

B
C

B
6

D
A

2
1

1
0

F
F

F
3

D
2

8 -
C
D

0
C

1
3

E
C

5
F

9
7

4
4

1
7

C
4

A
7

7
E

3
D

6
4

5
D

1
9

7
3

9 -
6
0

8
1

4
F

D
C

2
2

2
A

9
0

8
8

4
6

E
E

B
8

1
4

D
E

5
E

0
B

D
B

A -
E
0

3
2

3
A

0
A

4
9

0
6

2
4

5
C

C
2

D
3

A
C

6
2

9
1

9
5

E
4

7
9

B -
E
7

C
8

3
7

6
D

8
D

D
5

4
E

A
9

6
C

5
6

F
4

E
A

6
5

7
A

A
E

0
8

C -
B
A

7
8

2
5

2
E

1
C

A
6

B
4

C
6

E
8

D
D

7
4

1
F

4
B

B
D

8
B

8
A

D -
7
0

3
E

B
5

6
6

4
8

0
3

F
6

0
E

6
1

3
5

5
7

B
9

8
6

C
1

1
D

9
E

E - E F 9 1 6 D 8 9 9 1 8 E C 5 2 D

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019 21

1 8 8 1 9 9 E 4 B E 7 9 E 5 8 F

F -

8

C

A

1

8

9

0

D

B

F

E

6

4

2

6

8

4

1

9

9

2

D

0

F

B

0

5

4

B

B

1

6

Inverse SBox0 (AES SBox)

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -

5

2

0

9

6

A

D

5

3

0

3

6

A

5

3

8

B

F

4

0

A

3

9

E

8

1

F

3

D

7

F

B

1 -

7

C

E

3

3

9

8

2

9

B

2

F

F

F

8

7

3

4

8

E

4

3

4

4

C

4

D

E

E

9

C

B

2 -

5

4

7

B

9

4

3

2

A

6

C

2

2

3

3

D

E

E

4

C

9

5

0

B

4

2

F

A

C

3

4

E

3 -

0

8

2

E

A

1

6

6

2

8

D

9

2

4

B

2

7

6

5

B

A

2

4

9

6

D

8

B

D

1

2

5

4 -

7

2

F

8

F

6

6

4

8

6

6

8

9

8

1

6

D

4

A

4

5

C

C

C

5

D

6

5

B

6

9

2

5 -

6

C

7

0

4

8

5

0

F

D

E

D

B

9

D

A

5

E

1

5

4

6

5

7

A

7

8

D

9

D

8

4

6 -

9

0

D

8

A

B

0

0

8

C

B

C

D

3

0

A

F

7

E

4

5

8

0

5

B

8

B

3

4

5

0

6

7 -

D

0

2

C

1

E

8

F

C

A

3

F

0

F

0

2

C

1

A

F

B

D

0

3

0

1

1

3

8

A

6

B

8 -

3

A

9

1

1

1

4

1

4

F

6

7

D

C

E

A

9

7

F

2

C

F

C

E

F

0

B

4

E

6

7

3

9 -

9

6

A

C

7

4

2

2

E

7

A

D

3

5

8

5

E

2

F

9

3

7

E

8

1

C

7

5

D

F

6

E

A -

4

7

F

1

1

A

7

1

1

D

2

9

C

5

8

9

6

F

B

7

6

2

0

E

A

A

1

8

B

E

1

B

B -

F

C

5

6

3

E

4

B

C

6

D

2

7

9

2

0

9

A

D

B

C

0

F

E

7

8

C

D

5

A

F

4

C -

1

F

D

D

A

8

3

3

8

8

0

7

C

7

3

1

B

1

1

2

1

0

5

9

2

7

8

0

E

C

5

F

D -

6

0

5

1

7

F

A

9

1

9

B

5

4

A

0

D

2

D

E

5

7

A

9

F

9

3

C

9

9

C

E

F

E -

A

0

E

0

3

B

4

D

A

E

2

A

F

5

B

0

C

8

E

B

B

B

3

C

8

3

5

3

9

9

6

1

F -

1

7

2

B

0

4

7

E

B

A

7

7

D

6

2

6

E

1

6

9

1

4

6

3

5

5

2

1

0

C

7

D

Direct SBox1

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -

9

5

A

8

6

C

C

4

6

9

1

F

3

D

E

C

8

C

F

8

B

7

3

1

C

1

3

F

2

9

5

6

1 -

7

E

D

4

4

4

E

0

E

3

8

6

C

7

F

3

D

8

F

0

C

0

0

B

A

C

4

C

7

4

A

1

2 -

6

0

C

3

3

5

3

4

7

D

8

7

2

F

9

8

A

E

9

7

1

C

4

9

B

C

A

5

A

6

1

A

3 -

3

3

D

F

2

7

5

5

5

8

0

3

D

A

6

E

0

9

4

8

1

E

7

8

0

2

8

8

8

F

D

E

4 -

6

F

5

3

D

9

5

E

A

2

B

D

2

2

6

1

E

1

E

2

9

C

2

1

C

8

C

E

1

3

9

F

5 -

0

8

7

5

9

4

1

6

3

6

D

5

F

B

4

0

0

1

7

9

E

A

3

A

6

B

F

2

5

2

E

7

6 -

C

6

B

A

D

7

A

7

A

B

B

0

F

5

F

A

7

3

2

B

B

9

3

8

3

2

F

E

6

8

9

B

7 -

D

B

A

A

7

B

4

3

3

7

9

E

0

4

7

A

3

9

1

D

1

B

D

1

F

F

6

4

5

7

2

D

8 -

E

8

F

D

9

1

6

6

B

3

5

9

1

7

7

F

0

E

D

C

8

1

1

2

4

E

A

9

E

F

F

9

9 -

A

F

C

D

2

E

8

0

7

6

6

2

C

F

1

4

3

B

8

A

5

F

2

C

B

1

4

1

F

7

D

6

A -

5

B

7

1

8

2

C

A

1

5

3

E

5

4

5

C

2

3

4

F

B

5

F

C

C

5

7

C

1

8

C

C

B -

B

8

2

A

8

4

D

3

4

D

4

A

2

5

F

6

8

D

8

9

2

6

0

0

1

1

4

B

C

B

F

1

C -

3

C

D

D

6

5

2

8

B

4

9

6

E

B

B

F

E

D

8

3

0

7

9

A

C

2

8

E

4

5

7

2

D -

E

6

9

3

A

D

B

E

E

4

9

D

2

4

1

9

4

6

E

9

2

0

4

7

0

C

0

6

9

2

E

5

E -

B

2

B

B

6

D

3

0

8

5

4

2

9

9

0

D

A

3

5

A

7

7

8

B

5

D

0

F

0

5

E

E

F -

A

4

5

0

B

6

7

0

D

2

5

1

D

0

9

0

A

0

6

3

0

A

6

7

F

4

6

A

C

9

1

0

Inverse SBox1

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -

B

B

5

8

3

C

3

5

7

6

E

E

D

D

C

A

5

0

3

8

F

A

1

B

D

C

E

7

8

8

E

D

1 -

F

F

B

C

8

B

4

E

9

7

A

4

5

3

8

6

A

E

D

7

2

F

7

A

2

A

7

9

3

A

0

5

2 -

D

A

4

B

4

6

A

8

D

6

B

6

B

A

3

2

C

3

0

E

B

1

6

9

9

B

7

F

9

2

2

6

3 -

E

3

0

B

6

C

3

0

2

3

2

2

5

4

7

4

6

B

7

8

5

B

9

8

C

0

0

6

A

5

0

D

4 -

5

7

9

D

E

5

7

3

1

2

C

E

D

8

D

B

3

9

2

B

B

5

B

D

1

D

B

4

8

C

A

9

5 -

F

1

F

5

5

E

4

1

A

6

3

3

0

F

7

E

3

4

8

5

E

9

A

0

A

7

E

C

4

3

9

A

6 -

2

0

4

7

9

5

F

9

7

D

C

2

8

3

F

B

6

E

0

4

F

D

5

C

0

2

E

2

3

7

4

0

7 -

F

3

A

1

C

F

6

8

1

E

5

1

9

4

E

A

3

B

5

9

7

7

7

2

A

D

2

4

1

0

8

7

8 -

9

3

8

A

A

2

C

9

B

2

E

4

1

5

2

5

3

D

B

9

9

9

E

B

0

8

B

8

C

D

3

E

9 -

F

7

8

2

D

E

D

1

5

2

0

0

C

5

2

9

2

7

E

6

C

B

6

F

4

A

D

5

7

5

4

F

A -

F

8

1

F

4

4

E

8

F

0

2

D

2

E

6

3

0

1

8

D

7

1

6

4

1

C

D

2

2

8

9

0

B -

6

5

9

C

E

0

8

4

C

4

A

A

F

2

0

A

B

0

6

A

6

1

E

1

2

C

4

5

D

3

C

7

C -

1

A

0

C

C

C

2

1

0

3

A

C

6

0

1

6

4

C

F

E

A

3

B

E

A

F

9

1

4

D

9

6

D -

F

6

7

B

F

4

B

3

1

1

5

5

9

F

6

2

1

8

4

2

3

6

7

0

8

9

C

1

3

F

3

1

E -

1

3

4

8

4

9

1

4

D

4

D

F

D

0

5

F

8

0

D

9

5

A

C

6

0

7

C

8

E

F

8

E

F -

1

9

B

F

5

D

1

7

F

C

6

6

B

7

9

E

0

9

8

F

6

7

5

6

A

B

8

1

6

D

7

C

Direct SBox2

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

22 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019

0 -

A

6

9

D

5

F

0

8

3

E

7

B

F

1

B

0

8

E

E

C

2

C

0

C

6

9

B

6

A

D

E

D

1 -

B

2

6

0

E

7

F

8

E

3

3

9

9

7

1

1

4

1

D

B

A

E

2

7

2

3

3

F

6

7

5

1

2 -

C

8

B

3

A

1

4

B

6

2

A

9

8

9

2

E

0

4

2

0

0

D

7

2

5

A

2

6

1

9

7

C

3 -

5

5

3

6

1

8

1

B

C

6

D

4

6

6

0

A

0

0

3

4

0

E

7

4

2

2

B

9

5

D

D

3

4 -

F

5

C

D

4

8

8

4

2

5

7

3

5

0

1

4

C

4

4

3

4

5

6

F

3

1

E

8

8

6

E

9

5 -

F

7

7

A

E

5

D

6

1

7

3

2

C

C

E

0

D

8

C

2

E

6

3

5

7

9

2

9

A

F

7

7

6 -

3

B

9

0

E

E

1

2

F

9

0

2

1

C

B

A

9

6

D

E

F

B

A

4

A

2

C

B

9

4

A

3

7 -

9

1

5

7

8

B

3

C

F

2

2

F

C

F

6

1

8

0

E

4

4

D

9

C

5

B

1

5

7

8

B

1

8 -

0

F

A

B

1

3

A

7

B

5

4

4

B

7

7

0

0

3

8

3

4

C

9

8

D

D

4

F

F

F

8

A

9 -

F

3

F

A

3

0

4

E

3

3

D

0

4

2

D

5

6

D

5

C

8

1

9

5

D

2

2

B

0

1

9

9

A -

6

A

5

6

A

C

B

4

0

7

C

A

9

E

E

F

1

A

E

A

8

8

C

1

9

3

8

D

E

1

7

D

B -

F

D

A

5

F

0

3

A

E

2

B

8

0

B

C

5

4

9

6

E

0

5

7

1

4

6

1

F

2

A

8

F

C -

6

8

F

6

D

9

3

8

8

2

4

7

F

C

7

E

0

9

3

7

F

4

1

D

9

F

A

0

A

8

5

2

D -

D

A

2

4

F

E

7

5

6

C

B

C

C

3

6

3

C

0

9

B

1

0

B

D

B

F

1

E

4

0

4

A

E -

5

9

1

6

5

E

B

B

5

4

C

7

E

B

6

4

8

C

9

A

0

6

3

D

7

6

2

8

2

1

B

E

F -

D

1

8

5

8

7

A

A

5

3

C

E

D

F

6

5

5

8

D

C

7

F

D

7

C

9

6

B

2

D

9

2

Inverse SBox2

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -

3

8

9

E

6

5

8

8

2

8

B

A

E

A

A

4

0

3

C

8

3

7

B

6

0

B

2

A

3

A

8

0

1 -

D

A

1

7

6

3

8

2

4

7

7

D

E

1

5

4

3

2

2

E

A

8

3

3

6

6

C

B

D

D

B

D

2 -

2

9

E

E

3

C

1

C

D

1

4

4

2

D

1

B

E

D

5

D

B

E

9

D

0

A

F

E

2

7

7

5

3 -

9

2

4

C

5

5

9

4

3

9

5

B

3

1

C

9

C

3

1

5

B

3

6

0

7

3

E

B

0

4

1

D

4 -

D

E

1

8

9

6

4

9

8

5

4

A

B

C

C

5

4

2

B

8

D

F

2

3

8

A

7

A

9

3

8

D

5 -

4

6

1

F

C

F

F

4

E

4

3

0

A

1

7

1

F

8

E

0

2

C

7

C

9

9

3

E

E

2

0

2

6 -

1

1

7

7

2

4

D

7

E

7

F

7

3

6

1

E

C

0

0

C

A

0

F

D

D

4

9

8

B

9

4

B

7 -

8

7

B

B

2

B

4

5

3

B

D

3

E

C

5

F

7

E

5

C

5

1

0

5

2

F

A

F

C

7

F

A

8 -

7

8

9

A

C

4

8

9

4

3

F

1

4

E

F

2

A

A

2

6

8

F

7

2

E

8

A

D

0

8

B

F

9 -

6

1

7

0

F

F

A

C

6

E

9

B

6

8

1

6

8

B

9

F

E

9

D

9

7

B

0

1

A

6

C

C

A -

C

D

2

2

6

C

6

F

6

B

B

1

0

0

8

3

C

E

2

5

F

3

8

1

A

2

0

E

1

A

5

E

B -

0

7

7

F

1

0

2

1

A

3

8

4

0

D

8

6

B

5

3

D

6

7

E

3

D

5

D

B

E

F

D

C

C -

D

8

A

B

5

9

D

6

4

8

B

7

3

4

E

5

2

0

F

C

A

5

6

D

5

6

4

1

F

5

7

6

D -

9

5

F

0

9

C

3

F

3

5

9

7

5

3

F

B

5

8

C

2

D

0

1

9

F

9

8

C

6

9

F

6

E -

5

7

A

E

B

4

1

4

7

9

5

2

5

A

1

2

4

D

4

F

A

9

E

6

0

9

0

F

6

2

A

7

F -

B

2

0

6

7

4

9

0

C

A

4

0

C

1

5

0

1

3

6

4

9

1

6

A

C

6

B

0

D

2

8

E

Direct SBox3

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -

D

9

E

E

8

3

B

5

F

4

0

2

E

F

6

4

8

E

4

D

3

4

4

8

C

2

2

9

C

6

9

0

1 -

B

3

9

F

5

2

2

2

2

F

E

7

D

0

7

6

9

5

8

D

A

1

2

B

5

6

D

7

7

D

1

C

2 -

2

D

9

A

3

B

1

2

D

D

0

0

2

4

A

2

6

3

1

1

0

7

9

4

5

D

F

6

0

E

7

F

3 -

F

F

5

E

F

3

6

5

E

5

F

1

A

0

9

3

1

E

B

C

D

E

A

9

8

B

F

5

F

A

B

2

4 -

6

2

7

E

B

9

5

7

6

9

4

C

F

D

4

3

1

A

0

8

3

5

0

5

E

6

8

8

A

5

4

4

5 -

4

5

0

1

B

D

5

B

B

6

C

C

B

E

D

3

9

B

9

E

8

F

4

0

3

2

C

3

8

A

3

E

6 -

0

B

5

8

D

B

9

9

0

D

E

1

8

7

B

8

0

6

0

F

0

C

6

6

A

4

F

E

3

D

1

0

7 -

F

B

B

B

6

B

5

3

5

A

C

1

2

0

4

2

3

1

7

C

C

F

E

0

8

9

E

2

6

C

0

9

8 -

0

4

1

7

C

B

C

0

E

9

A

C

5

F

4

E

8

1

8

C

1

3

B

A

0

A

C

E

5

5

2

3

9 -

3

8

4

B

F

0

7

9

6

E

2

1

B

7

8

2

4

6

D

1

7

1

B

F

2

6

8

6

D

6

2

E

A -

9

7

C

9

7

4

A

6

2

A

9

8

5

9

D

A

A

F

7

8

9

2

2

8

6

A

6

D

1

D

4

F

B -

F

8

6

1

7

A

6

0

F

2

6

F

1

5

C

4

E

D

1

6

D

4

E

A

7

0

C

D

E

B

D

C

C -

B

0

7

7

1

9

3

A

D

8

5

C

F

9

2

7

7

2

5

0

C

5

3

C

3

7

E

3

A

8

A

A

D -

F

7

2

C

7

3

1

F

3

3

7

5

C

7

6

8

6

7

3

6

4

A

9

6

A

B

E

C

F

C

1

B

E -

C

8

7

B

E

8

A

3

8

0

B

4

9

C

A

E

1

8

4

1

D

5

E

4

2

5

5

1

1

4

4

9

F -

A

D

3

F

C

A

9

1

D

2

A

7

8

4

9

D

3

0

D

F

8

5

4

7

0

3

3

9

B

1

5

4

Inverse SBox3

* - 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 -

2

5

5

1

0

5

F

C

8

0

4

B

6

8

2

A

4

9

7

F

8

C

6

0

6

A

6

4

2

E

6

9

1 -

6

F

2

9

2

3

8

A

E

E

B

6

B

9

8

1

E

8

C

2

4

8

D

F

1

F

A

E

3

8

D

3

2 -

7

6

9

5

1

3

8

F

2

6

E

C

9

C

C

7

A

B

0

D

A

4

1

B

D

1

2

0

9

F

1

4

3 -

F

8

7

8

5

C

D

4

0

A

4

A

D

9

C

C

9

0

F

D

C

3

2

2

C

B

6

E

5

F

F

1

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019 23

4 -

5

B

E

9

7

7

4

7

4

F

5

0

9

8

F

B

0

B

E

F

D

A

9

1

4

5

0

9

8

7

A

F

5 -

C

9

E

D

1

2

7

3

F

F

8

E

1

C

4

3

6

1

A

6

7

4

5

3

C

5

2

C

3

1

8

6

6 -

B

3

B

1

4

0

2

8

0

7

3

3

6

B

D

8

D

7

4

4

A

C

7

2

7

E

A

D

9

4

B

5

7 -

B

C

9

A

C

8

D

2

A

2

D

5

1

7

C

1

A

9

9

3

B

2

E

1

7

9

1

E

4

1

2

F

8 -

E

4

8

8

9

7

0

2

F

6

F

A

9

D

6

6

4

D

7

C

5

E

3

C

8

9

1

9

0

8

5

A

9 -

0

F

F

3

A

A

3

7

2

B

1

8

D

B

A

0

A

5

6

3

2

1

5

8

E

6

F

7

5

9

1

1

A -

3

6

1

A

2

7

E

3

6

C

4

E

A

3

F

5

C

E

3

B

C

F

D

C

8

5

F

0

E

7

A

8

B -

C

0

F

E

3

F

1

0

E

5

0

3

5

4

9

6

6

7

4

2

8

B

7

1

3

9

5

2

5

6

9

B

C -

8

3

7

5

0

C

5

D

B

7

C

A

0

E

D

6

E

0

A

1

F

2

8

2

5

5

B

D

8

D

7

A

D -

1

6

9

9

F

4

5

7

B

A

E

A

9

E

1

D

C

4

0

0

A

7

6

2

B

F

2

4

3

A

F

9

E -

7

B

6

5

7

D

C

D

E

B

3

4

4

C

1

5

E

2

8

4

B

B

B

E

D

D

B

8

0

1

0

6

F -

9

2

3

5

B

4

3

2

0

4

3

D

2

D

D

0

B

0

C

6

3

E

7

0

D

E

4

6

6

D

3

0

APPENDIX B – ENCRYPT-DIEHARDER.C CODE TO

GENERATE PSEUDORANDOM SEQUENCE

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "encrypt.c"

int main () {

 unsigned char *npub;

 unsigned char *k;

 unsigned char *state;

 struct FlexAEADv1 flexaeadv1;

 k = malloc(KEYSIZE);

 memset(k, 0x00, KEYSIZE);

 npub = malloc(BLOCKSIZE);

 memset(npub, 0x00, BLOCKSIZE);

 FlexAEADv1_init(&flexaeadv1, k);

 fprintf(stderr, "FlexAEADv1 ZERO %d %d\n",
BLOCKSIZE*8, KEYSIZE*8);

 // ### reset the counter and checksum

 memcpy(flexaeadv1.counter, npub, NONCESIZE);

 dirPFK(flexaeadv1.counter, flexaeadv1.nBytes,
(flexaeadv1.subkeys + (4*flexaeadv1.nBytes)),
flexaeadv1.nRounds, flexaeadv1.state);

 state = malloc(BLOCKSIZE);

 while(1)

 {

 memset(state, 0x00, BLOCKSIZE);

 inc32(flexaeadv1.counter,
flexaeadv1.nBytes, 0x11111111);

 encryptBlock(&flexaeadv1, state);

 fwrite(state, 1, flexaeadv1.nBytes, stdout);

 }

 free(state);

}

// execution example: ./encrypt-dieharder |
dieharder -a -g 200

REFERENCES

[1] BERNSTEIN, D. J.; LANGE, T. eds. eBACS: ECRYPT Benchmarking

of Cryptographic Systems. URL: <https://bench.cr.yp.to> Access Date:

Feb 28th 2019.

[2] BERNSTEIN, D. J. Cryptographic competitions. URL: <

https://competitions.cr.yp.to> Access Date: Feb 28th 2019.

[3] BIHAM, E.; SHAMIR, A. Differential cryptanalysis of DES-like

cryptosystems. Journal of CRYPTOLOGY, 4, n. 1, 1991. 3-72.

[4] CRYPTOLUX RESEARCH GROUP - UNIVERSITY OF

LUXEMBOURG. Lightweight Block Ciphers, 2016. URL:

<https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers>.

Access Date: Feb 28th 2019.

[5] DAEMEN, J.; RIJMEN, V. Specification for the advanced encryption

standard (AES). Federal Information Processing Standards Publication,

2001.

[6] DINU, D. et al. FELICS – Fair Evaluation of Lightweight Cryptographic

Systems, jul. 2015. URL: <http://csrc.nist.gov/groups/ST/lwc-

workshop2015/papers/session7-dinu-paper.pdf>. Access Date: Feb 28th

2019.

[7] EICHLSEDER, M. Posting on the NIST LWC mailing list, 2019. URL:<

https://groups.google.com/a/list.nist.gov/forum/#!topic/lwc-

forum/SgmvFLzFQNI>. Access Date: Jul 21st 2019.

[8] EICHLSEDER, M.; KALES, D.; SCHOFNEGGER, M. Forgery Attacks

on FlexAE and FlexAEAD. IACR Cryptology ePrint Archive, Report

2019/679, 2019. URL:<https://eprint.iacr.org/2019/679>. Access Date:

Jul 21st 2019.

[9] EVEN, S.; MANSOUR, Y. A construction of a cipher from a single

pseudorandom permutation. Journal of Cryptology, 10, 1997. 151-161.

[10] JUTLA, C. S. Encryption modes with almost free message integrity.

International Conference on the Theory and Applications of

Cryptographic Techniques, 2001. 529-544.

[11] MATSUI, M. Linear cryptanalysis method for DES cipher. Workshop on

the Theory and Application of of Cryptographic Techniques, 1993. 386-

397.

[12] MÈGE, A.: OFFICIAL COMMENT: FlexAEAD. Posting on the NIST

LWC mailing list, 2019.

URL:<https://groups.google.com/a/list.nist.gov/forum/#!topic/lwc-

forum/DPQVEJ5oBeU> . Access Date: Jul 21st 2019.

[13] NASCIMENTO, E.M.; XEXÉO, J.A.M. FlexAEAD - A Lightweight

Cipher with Integrated Authentication. Round 1 submission to NIST

lightweight cryptography Standardization process, 2019. URL:

<https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/d

ocuments/round-1/spec-doc/FlexAEAD-spec.pdf>. Access Date: Jul 21st

2019.

[14] NASCIMENTO, E.M.; XEXÉO, J.A.M. "A flexible authenticated

lightweight cipher using Even-Mansour construction". 2017 IEEE

International Conference on Communications (ICC), Paris, 2017, pp. 1-6.

(doi: 10.1109/ICC.2017.7996734).

URL:<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=799673

4&isnumber=7996317>. Access Date: Feb 28th 2019.

[15] NASCIMENTO, E.M. “Algoritmo de Criptografia Leve com Utilização

de Autenticação”. 2017. 113p. Dissertação (mestrado) - Instituto Militar

de Engenharia, Rio de Janeiro, 2017. URL:

<http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/

2017-Eduardo.pdf>. Access Date: Feb 28th 2019.

[16] NASCIMENTO, E.M.; XEXÉO, J.A.M. A Lightweight Cipher with

Integrated Authentication. In: CONCURSO DE TESES E

24 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 6, NO. 1, 2019

DISSERTAÇÕES - SIMPÓSIO BRASILEIRO EM SEGURANÇA DA

INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 18.

 , 2018, 1. Anais Estendidos do XVIII Simpósio Brasileiro em

Segurança da Informação e de Sistemas Computacionais. Porto Alegre:

Sociedade Brasileira de Computação, oct. 2018 . p. 25 - 32.

[17] NIST - NATIONAL INSTITUTE OF STANDARDS AND

TECHNOLOGY. Submission Requirements and Evaluation Criteria for

the Lightweight Cryptography Standardization Process, 2018. URL:<

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-

Cryptography/documents/final-lwc-submission-requirements-

august2018.pdf>. Access Date: Oct 21st 2019.

[18] RAHMAN, M.; Saha, D.; Paul, G. Posting on the NIST LWC mailing

list, 2019. URL:<

https://groups.google.com/a/list.nist.gov/forum/#!topic/lwc-

forum/VLWtGnJStew> . Access Date: Jul 21st 2019.

[19] RAHMAN, M.; Saha, D.; Paul, G. Iterated Truncated Differential for

Internal Keyed Permutation of FlexAEAD. IACR Cryptology ePrint

Archive, Report 2019/539, 2019. URL:<https://eprint.iacr.org/2019/539>

. Access Date: Jul 21st 2019.

Eduardo Marsola do Nascimento
received his MSc. in System and

Computing from Instituto Militar de

Engenharia - IME (2017), MBA in

Business Management from

Fundação Getúlio Vargas - FGV

(2011), Undergraduate degree in

Computer Engineering from

Universidade São Judas Tadeu -

USJT (2001). He has worked at the

private sector to several multinational companies, mostly in it

infrastructure and it security teams. Actually he is a

telecommunication engineer at Petrobras - Petróleo Brasileiro

S/A working at cybersecurity department.

José Antonio Moreira Xexéo possui

graduação em Engenharia da Comunicações

pelo Instituto Militar de Engenharia (1972),

mestrado em Sistemas e Computação pelo

Instituto Militar de Engenharia (1983) e

doutorado em Engenharia de Sistemas e

Computação pela Universidade Federal do

Rio de Janeiro (2001). É avaliador

institucional e de curso de graduação do INEP. Atualmente é

professor nos cursos de graduação em Administração e

Engenharia de Produção da Universidade Veiga de Almeida e

dos cursos de graduação e mestrado em Engenharia de

Computação do Instituto Militar de Engenharia (IME), onde

realiza pesquisa em criptologia. Liderou a equipe que projetou

e implantou no IME, em 1985, o primeiro curso de Engenharia

de Computação do Brasil, do qual foi o seu primeiro

coordenador. Atuou por mais de 10 anos na área de

desenvolvimento tecnológico na área industrial de informática.

Tem experiência acadêmica em engenharia e ciência da

computação, principalmente criptologia. Atua no Ensino

Superior como professor e coordenador de cursos há quase 40

anos.

