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Abstract—Click fraud detection consists of identifying the 

intention behind received clicks, given only technical data and 

context information. Reviewing concepts involved in click fraud 

practices and related work, a system that detects and prevents 

this type of fraud is proposed and implemented. The system is 

based and implemented on an ad network, one of the 3 main 

agents in the online ad environment, and for its validation, 3 

servers were used, representing the publisher, the ad network 

with the system implemented and the announcer, and a bot that 

attempts to commit a click fraud. 

 
Index Terms—Click fraud, online security, bots, system 

architecture 

I. INTRODUCTION 

HE publicity domain grows continually by the day. One 

of the reports from eMarketer [1] states an estimated 

growth of nearly 16% for the digital advertisement area in the 

United States compared to the previous year, summing almost 

83 million dollars. That's equivalent to roughly 40% of the 

overall investment in advertising, estimated as 205.06 billion 

dollars. With these numbers, it is possible to see the 

importance and interest gained by the area recently, which 

includes related technical aspects, such as click fraud 

detection. 

A. Motivation 

Click fraud detection is an inherently nebulous field. In 

broad terms, it consists of identifying the intention behind the 

received clicks, given only technical data (such as the IP 

address and other information provided by HTTP requests) 

and contextual information (previous accesses from the same 

IP, for example). Thus, malicious click detection involves 

comparing every access behavior with what's expected from 

normal users, but, that is difficult to formalize and context 

dependent behavior is nondeterministic and context 

dependent. 

Moreover, current literature is lacking in certain aspects. 

Many studies focus on the advertiser's side, such as [2], and 

few on how to apply click fraud detection techniques on ad 
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networks, the middle agent between the publisher and 

advertiser, all of which are parties involved in the online 

publicity area (see Section II); and relatively shallow 

elaboration on the technical details and inner workings of 

established click fraud detection systems, giving little insight 

on the design decisions and compromises that went on behind 

the creation of such applications. 

B. Objective 

The objective is to propose a system of click fraud detection 

and prevention applied to an ad network. Ad network's interest 

in preventing frauds lies in their relationship with advertisers: 

the latter wishes for the best click quality possible (or, the 

biggest number of interested users over the least of resources 

used possible), and directly pays the ad network for such 

traffic. Bad clicks directly hurt the advertisers' goals, and thus 

their wish to interact with networks that may bring such clicks. 

The approach is to provide is to provide an introduction into 

how one might implement a system as described above, but 

not necessarily for just an agent in the area, going into details 

such as design choices and architecture. 

C. Outline 

Throughout this report the path taken to create the defense 

system will be elaborated in detail. In Section II - Technical 

Review, is an overview of basic concepts necessary for a good 

understanding of the rest of the report, including the online 

advertisement agents and previous studies on similar subjects. 

Section III - Problem Description goes over the problems that 

we aim to address throughout the study and development 

process like usual click fraud types. The theory and concepts 

brought up and expanded upon, or proposed by this study, like 

the various rules and their classifications, to create the 

system's theoretical basis, are in Section IV - Proposal. 

Continuing that, Section V - Implementation talks about the 

implementation details that had to be considered on the 

process of programming the system's theory, including 

creating an attacking bot to test the system. Those are present 

in Section VI - Tests and Results, which shows and explains 

the results obtained. Section VII - Conclusion serves as a 

closing off for the study and compares the results with 

expectations, along with suggestions for system improvement. 

 

II. TECHNICAL REVIEW 

O be able to elaborate on the process of creation and 

design of the system, a solid understanding of the online 
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publicity field's inner workings is required, along with a 

glance at what studies have already been published on the area 

and identify lacking parts in order to propose new system that 

can be relevant. 

A. Online Advertisement Concepts 

Online advertisement involves primarily four agents [3] [4]:  

● The advertiser or announcer wishes to publicize 

their product or service to a target public that may be 

interested in consuming what the announcer has to 

offer. 

● A publisher is someone who has their own publicity 

platform, such as a site or a blog, and is able to show 

the advertiser's product to the visitors of said platform. 

Often the content in the publisher's platform and that 

of the advertiser's product are of similar nature, though 

not always. 

● Users are any visitors to the publisher's website, who 

may be interested and click on the advertiser's ad, 

perhaps even buying their product or otherwise doing 

a directly financially relevant action for the advertiser, 

thanks to the publisher's publicity. 

● At last, the ad network is a middleman between the 

advertisers and publishers. Their objective is to 

connect advertisers interested in the publicity with 

publishers willing to offer such service. Some ad 

networks take a dynamic approach by deciding which 

ad to show for a given user accessing a given 

publisher's site. 

 

Part of the growing interest in the area comes from the 

profit it may generate for any of the parts. The most common 

scenario is for the advertiser to pay for the services of either 

the publisher or the ad network (which in turn pays the 

involved publishers). How exactly this payment is measured 

varies, and different advertisers are interested in different 

types of audience and interactions with their ads. Usual 

payment methods are: 

 

● Pay-Per-Impression (PPI), in which the advertiser is 

interested in how many users simply visualize their ad. 

Impressions are for the most part trivial to obtain, and 

hardly correspond with any gain for the advertiser by 

themselves, so the payment received per impression is 

extremely low and this method to be less common. 

● Pay-Per-Mille (PPM) is a more utilized variant of PPI, 

where the payment is given based on how many 

thousands of views the ads obtained, making this 

method a more realistic payment option. 

● Pay-Per-Click (PPC) cares about the quantity of clicks 

the ads have received. Often payment is based on the 

click-through rate that the publisher or ad network 

expected to get for this specific ad. This method is the 

focus of this study. 

● A stricter method is Pay-Per-Conversion or Pay-Per-

Action (PPA), where payment only happens based on 

the number of users which actually perform a certain 

action within the advertiser's domain, such as buying a 

product or signing up on their site.  

 

An example of a PCC method and how it works is in Figure 

1. The user visits the publisher's site (1), and then asks for the 

ad data that's provided by the ad network to the publisher's site 

(2). The network will proceed by choosing the ad they believe 

the user is more likely to be interested in (3,4) and sends the 

data to the user (5). If the user is indeed interested by the ad, 

they will click it, be redirected to the ad network's domain (6), 

and then to the advertiser's site (7). After this process, the 

announcer will eventually pay the ad network for redirecting a 

user to their site (8), and the ad network will in turn also pay 

the publisher for reaching to the user (9). 

 

 
Fig. 1.  Example of a possible PPC scheme. 

 

Considering PPC the payment method, click fraud is the 

attack of interest. A click fraud happens when a malicious 

agent executes an illegitimate click on an ad, which is a click 

that comes from a user that doesn't have real interest in what's 

being advertised. Clicks may be generated manually (by hiring 

people to click repeatedly on certain ads), or, more often, 

automated (using bots). 

B. HTTP Protocol 

Understanding the nuances of the HTTP protocol is also 

important for understanding how the developed system works. 

HTTP stands for HyperText Transfer Protocol and is the base 

upon which a big part of internet applications are built. The 

many reports from the RFC 7230 family [5] [6] are the official 

source for the protocol's inner workings and other details. The 

Hypertext Transfer Protocol (HTTP) is a stateless application-

level request/response protocol that uses extensible semantics 

and self-descriptive message payloads for flexible interaction 

with network-based hypertext information systems. One of the 

key aspects of this definition is HTTP’s statelessness, which is 

to say, there should be no persistence of data between one 

HTTP communication and the next, even if they're between 

the same parties. 

Communication carried through HTTP takes form of 

someone sending an HTTP Request, which must be answered 



ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 29 

 

with an HTTP Response from the request's target. HTTP 

Request packets are essentially the only input to identify 

malicious click, apart from click context. They provide 

essential information such as the IP address and headers from 

their sender.  

Cookies, although not part of HTTP, are another important 

component in web applications. They are a way of retaining 

state on communications with the HTTP Request's sender, and 

consist of a key and value pair, both of which can be any 

string the Request's receiver wishes. The presence of certain 

cookies in new HTTP Requests can be verified, allowing the 

receiver to take different options depending on the cookie's 

presence or values. Their use in the system will be clarified in 

Sections IV and V. 

C. Related Work 

Kitts et al. [7] present an overview on the Microsoft 

adCenter system and some of the design aspects of it. 

Although precise details aren't provided, a good idea of the 

overall workings of a defense system applied to an agent that's 

both publisher and ad network is given. Xu et al. [2] provide a 

detailed report on the techniques used for a fraud detection 

system on the advertiser side, which are key to a better 

understanding on how one would go about creating similar 

applications and general detection techniques. However, it is 

evident the lack of reports on systems that are used by ad 

networks, and a lack of elaboration on the more technical 

details and implementations of the tools used to detect and 

prevent click frauds. 

On click fraud attack methods, [8] is a report about the inner 

workings of a click fraud botnet, and presents the concept of a 

low-frequency attack, a click fraud attempt that occurs over a 

long period of time, using a small number of clicks over short 

time slots, like 3 fake clicks per day, as to not be detected by 

methods that look at expected click rates for a given ad. Other 

attack reports include [9], [10] and [11], all of which go over 

complex fraud cases that happened throughout the years. Both 

concepts of botnets and low-frequency attacks are explained in 

section III. 

 

III. PROBLEM DESCRIPTION 

IVEN the scarce published material that focuses on click 

fraud detection systems on ad networks, the main focus 

will be on the development of a system for that purpose. A 

dual approach is adopted: the idea is to consider an attack and 

build the system around defending against this attack. Attacks 

start simple and evolve in complexity, and so does system's 

defense accordingly. This process goes on incrementally until 

blocking off what's believed to be the most usual forms of 

attacks. 

Frauds, as already mentioned, can be done either manually 

or with the use of automatized bots. 

Click frauds committed by people, at their most basic, 

would usually consist of the attacker accessing the publisher's 

page, and from there clicking the ad or ads that they are meant 

to. Improvements on this method of attack usually involve 

scaling it by involving many hired attackers, all with different 

computers, often within the same room or building, to raise 

click throughput. Attackers could also be instructed to browse 

the advertiser's page briefly, to better imitate a legitimately 

interested client. 

Looking at how a bot attacks, on the other hand, first 

consider that the most basic way of registering a click is as an 

access to a specific ad URL, and thus the most basic type of 

fraud would be to simply go to the URL with a single HTTP 

request. More complex forms of attack would make use of 

patterns found in normal user behavior, namely expected 

fields in the HTTP packets, accessing all the expected URLs 

through the process, such as images, and not having a 

consistent time difference between different accesses. 

More sophisticated types of fraud use botnets. They are 

networks of infected machines, previously exposed to some 

type of malware meant to give some form of access to victims' 

computers. Those machines receive instructions on how to 

operate from a control server or from another infected 

machine, which in turn may also receive its own instructions 

from the main server or another module, and so on [8]. 

Attacks themselves are often conducted without knowledge of 

the infected machine's owner, running in the background. Bot 

malware may use the user's own behavior for fraud, such as 

redirecting them from sites they intended to visit to sites the 

attacker wishes to grant clicks. This effectively gives the 

attack some degree of human characteristics, namely the 

machine's owner's access behavior and a legitimate HTTP 

packet, making this type of attack is difficult to identify. An 

illustration of the attack can be seen in figure 2. 

 

 
Fig. 2.  Botnet attack with a compromised machine. Source: [12] 

 

Other complex kind of fraud is the low-frequency attack. 

One common detection technique is to analyze expected click-

through rate, a prediction on how many clicks an ad will 

receive over a period, mainly during certain times of the day 

and week, which is arrived at using advanced statistical 

analysis [12] [13]. That technique would then be able to notice 

unusual increases in activity for the ad it is analyzing. As 

attackers usually have more to gain with a larger number of 

G 
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clicks, this type of defense is very strong and will catch a good 

amount of simpler attacks. 

The low-frequency attack consists, then, of countering this 

defense by only interacting with the ad very few times over 

certain periods. Considerable time between each access makes 

it difficult to detect frauds as they are happening, even by 

professionals, and those attacks are often only detected months 

after they've already started [8] [9]. The combination of 

botnets and low-frequency attacks can be a challenge to 

defense systems, since it might split the already small quantity 

of accesses between different IP addresses with little trouble, 

turning detection even more difficult. 

IV. PROPOSAL 

HE overall architecture of the system is based on the 

proposal of [7]. Terms such as "rules" will appear in both 

works, though they are not necessarily referring to the same 

concepts. In particular, the rules JavascriptEnabledRule and 

ExternalBehaviorRule in the system derive from the work of 

Xu et al. [12], while the other rules (BlacklistRule, 

HumanTimerRule, PagesLoadedRule, AcceptLangRule, 

TimePeriodRule, UserAgentRule, DoNotTrackRule} e 

RedirectTimeRule}) and their classifications are this work's 

novel contribution. 

Fig. 3 shows the system architecture. The system relies on 

two parallel processes, each focused on one of the main 

modules, Online Analysis and Offline Analysis. This division 

of the analysis process is also based on the proposal by Kits et 

Al [7]. The former process is directly responsible for what 

happens when a HTTP request is received in the server and the 

procedures that take place before a response is sent back to the 

requester.  

First, the URL requested is checked in the URL Hash 

module, and if it's a valid URL, the request proceeds to the 

Online Analysis. This part of the system passes the received 

request through various online rules. After using the results 

from the rules' tests to arrive at a conclusion on the legitimacy 

of the click, the online analysis is completed and the request 

data, along with the module status and results from rule tests, 

are stored in the Database. 

 

 
Fig. 3.  System architecture. 

 

The Offline Analysis process, on the other hand, takes 

recorded requests from the database as input. The module 

takes the offline rules from the Rules module, and, similarly to 

the other process, runs the input through a series of tests from 

the rules. After analyzing the requests with this other set of 

rules, the offline analysis module may change the overall 

status of the request, working as the final automatic step in 

determining whether or not a click is malicious. Based on the 

results, the module may also make changes in rules by 

adjusting their impact on the overall analysis process, namely 

with their weight parameter. The module can have Announcer 

Reports to help arrive at a conclusion over click status. Those 

reports focus on recording user behavior on the announcer's 

web page and are used by the ExternalBehaviorRule. 

Although the system works automatically without user 

intervention, it is suggested that a team of security analysts 

that might work on the system when necessary and would be 

able to change the rules as they see fit, excluding or including 

new ones, or reviewing and interfering on the offline analysis 

module results if they judge it necessary, e.g. changing the 

status of a request in the database. 

The way users are redirected towards the desired site was 

changed to properly collect access information. The process of 

clicking on an ad and going to the advertiser's site usually 

works as follows: the user visits the publisher's site, which 

loads both the page from the publisher's domain and a 

javascript file from the network. This javascript contains both 

a link to the network's domain and an image of the ad. The 

user may click on this image, which redirects them to the 

network's page, which in turn redirects them to the 

announcer's site. Our process is very similar, but there are 2 

pages in the ad network domain that the user is redirected 

through, called adRequest.html and redirect.html. This 

allows the server to obtain much more information about the 

user (further details on Section V). 

 

A. Types of Rules 

The main method of detecting frauds the system uses are 

the Rules, as previously discussed. The idea is to test every 

received click with every rule and the system will then be able 

to determine whether the click is suspicious. Rules are divided 

in two categories related to the system where they're applied: 

online or offline. 

 

● As their tests must be executed in real time and at every 

HTTP request received, online rules are quick and 

generally less impacting by design. Although it may 

not make a difference for smaller sites, those with high 

traffic might find their ability to answer to clients 

quickly impacted by the system's presence, which 

should be avoided. Another constraint that comes with 

these rules is that they must only use information that 

has been acquired from the user's immediate access, 

such as the HTTP request received. 

● Offline rules, in contrast, are only applied over 

T 
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requests that have already been analyzed by the online 

rules. This type of rule uses mainly the database, and 

thus more extensive tests on clicks, like identifying if 

an IP address loaded all expected files from the domain 

or looking for unusual access patterns to the ad. This 

type of rule may also take as long as needed to execute, 

since its function is not related to the user's experience. 

 

Rules are also classified in two other groups in relation to 

how critical for the click analysis they are. They are divided 

between decisive rules and indicative rules. 

 

● If a click fails to pass at a decisive rule, it is 

automatically considered a fraud. These types of rules 

must be only those that verify aspects that a normal 

user will never miss out on, such as having HTTP 

request fields with expected values. 

● Indicative rules are, then, the rules that give a 

probability that a click may be illegitimate, which is to 

say, if it fails at one of these rules, it will not be certain 

that it is a malicious click. Such rules also have a 

weight factor to each of them. It defines how relevant 

the rule is for the overall legitimacy of the user and 

may be adjusted as necessary. There are also negative 

weights, which mean that failing the rule's test does not 

affect the user's rating negatively, but passing them 

improves it. 

 

Rules are described below, starting with the decisive and 

online rules, and elaborate on what they are meant to verify 

along with the design process behind them: 

 

1) BlacklistRule 

The system maintains a table with blacklisted IPs that have 

had too many frauds attributed to them. This rule simply 

compares the requester's IP address with what's already on the 

list, and accuses them of fraud if there's a match. It will also 

block off other unexpected IP addresses, like invalid IP codes 

or the IP address from the publisher themselves.  

 

2) HumanTimerRule 

For this rule, the idea is to see if the user's interaction with 

the ad is humanly possible, so the time difference between the 

ad's visualization and the user's click is verified. If they're 

quicker than a certain threshold, they fail the test. The 

threshold is set to 0.5 seconds which takes into account 

average human reaction times, as described below. 

Thorpe et al. [14] point to a value of 0.15 seconds for the 

minimum time between the eyes' visualization and the brain 

identifying the image, while Census at School Canada [15] 

and Human Benchmark [16] show similar results. Fig. 4 

shows a graph where the highest number of visitors reacted at 

around 260ms. Since this rule is set to only identify users with 

inhumanly fast click times, the value decided upon needed to 

be below the average, as not to accuse real people, and was set 

for 0.2 seconds. 

 

 
Fig. 4.  Quantity of users versus reaction time. Source: [16] 

 

This value alone does not consider the time it would take to 

realize interest with the content of the ad itself. 0.3 seconds 

was estimated as the time it would take for the user to realize 

said interest in the ad. Note that 0.3 seconds for the user's 

interest is a small amount of time, so it is estimated that the 

threshold could be changed to higher values, like 1 or even 2 

seconds, without blocking off real clicks. 

 

3) AcceptLangRule  

As real users are expected to be using web browsers to 

access the ad, this rule is used to verify the value of the 

AcceptLang header in the HTTP Request. Browsers usually 

have this field set in the same way for every request sent from 

it, so the rule will test if the header is valid and not empty. 

This rule is decisive, in contrast to the DNTRule in Subsection 

IV.A.7, because an empty or otherwise incorrect header field 

implies that the user isn't using a normal browser at all and is 

thus most likely not legitimate. 

 

4) PagesLoadedRule  

This rule is decisive and offline, as it needs to have the log 

of accesses to the relevant domain pages to be properly 

executed. The idea is to verify every user's access history in 

relation to the ad network and see if it's similar to how a 

normal user is expected to behave. For this, the rule will 

search for pages that are expected to be loaded, like the ad's 

image and images present within the ad network's redirecting 

pages, and also pages that aren't to be loaded, like hidden 

image links (see Subsection V.A for implementation details). 

Not having loaded those pages will identify the user as a fake. 

 

Indicative and online rules are: 

 

1) JavascriptEnabledRule  

Xu et al. [2] mentions that at least 98% of internet users 

have javascript enabled and indicates its presence as a sign of 

click legitimacy. To detect whether or not a given user has it 

disabled, HTTP cookies are used. To do this, a cookie is set on 

the first redirecting page of the ad network's domain through a 

javascript code. Cookie presence is verified on the access to 

the second page, and if it is indeed sent by the user, they will 

pass this test. 

According to [17] 3.7% of users block cookies and an 

insignificant amount blocks javascript, while more recently 

[18] gives a 99.93% usage percentage for javascript and 98% 

for cookies. This indicates that it's unlikely for a real user to 

fail this test, but still possible. 
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2)  UserAgentRule 

A rule that, in a similar way from the AcceptLangRule, 

verifies if the received requests contain a certain HTTP 

header; in this case, a valid UserAgent field, basically seeing if 

the value matches what's to be expected from a normal 

browser. A small weight for this rule is suggested, as it is easy 

for an attack to merely change the field's value and there's a 

possibility a real user would be using a browser whose 

UserAgent isn't accounted for in the system. The latter case is 

also why this rule is defined as indicative, rather than decisive; 

a user using a browser that's not well-known could have their 

click blocked in this case. 

 

3) DoNotTrackRule 

DoNotTrack or DNT is an HTTP field that's used for 

browsers in private mode and indicates for the sites being 

visited not to maintain user information. Since there is no 

particular reason for an attacker to worry about setting up this 

field, as they most likely would be using proxies in the first 

place, the presence of this field is a good way of identifying a 

legitimate user. Since passing in this test increases the 

likelihood of legitimacy for the click, and failing it does not 

indicate suspect behavior, the rule should have a small and 

negative weight (as explained earlier in this section). 

 

4) RedirectTimeRule  

While conducting the tests, it was noticed that the time it 

took for a browser to process a redirect response was much 

quicker than for the attack bot. The browser could answer the 

redirect triggered by the "meta refresh" field in the HTML 

page with a value of 0 in 0.5 seconds, the bot used for testing 

was unable to react in less than 1.1 seconds. This led to the 

creation of this rule, which looks at the time between 

accessing the first and second pages from the network domain, 

and fails whenever the user takes more than the expected time. 

Although the bot designed and used in tests did not manage to 

bypass this rule, it should not be decisive, as the redirect time 

for meta refresh will depend on browser, and users with older 

machines or less used browsers may fail it; even then, a 

relatively high weight for this rule is suggested. 

 

Finally, the indicative and offline rules are the following: 

 

1) TimePeriodRule  

As discussed, one of the ways of identifying abnormal 

accesses is to check for user behavior that differs significantly 

from the normal. To achieve that, this rule looks over the 

received requests on the database and finds odd patterns. 

Constant and quick accesses are clear fraudulent behavior, and 

in order to defend against that, two ways of identifying such 

patterns that this rule checks for are defined: 

● The first is to look for three or more clicks by the same 

IP in under a short period of time (we opted for 30 

seconds, but the value could be changed). 

● The other method is to search for five or more clicks 

within a longer period of time, (10 minutes, but again 

changeable) and check if the interval between them is 

fairly constant. 

Failing either or both of those tests leads to failing the rule, 

which is decisive because it verifies for extreme behavior that 

is very unlikely to happen with real clicks. 

 

2) ExternalBehaviorRule  

Behavior logs are an important part of fraud detection 

systems. One issue that arises from designing a defense 

system for an ad network is that it doesn't have access to the 

user's actions once they are within the advertiser's domain, and 

thus we're unable to collect information based on aspects that 

are significantly hard to forge, like mouse movements and 

time spent on pages. 

For this rule we count on the support of the advertiser, who 

is motivated to help the ad network's defense, as advertisers, 

who in theory pay for publisher services and ad networks will 

often suffer the biggest losses from fraudulent attacks. Thus, 

the advertiser will log certain aspects of the visit from any user 

that comes from the ad network's domain, and organize this 

data to send it back to the ad network in the format shown by 

Table I. 

 
TABLE I 

USER BEHAVIOR REPORT FROM THE ADVERTISER 

 
 

All categories in the table except for the last one should be 

stored in 2 separate counts each: one for the initial page, and 

another for the other pages in the site. A user that's truly 

interested will likely have high values in most of the fields 

collected, while a fraudulent one will typically not interact 

much with any pages, or only with the first one. 

V. IMPLEMENTATION 

HE whole project was coded in Python 3.6, and the 

persistent data was stored in a database in PostgreSQL 

9.6. 

As already mentioned, the problem was approached by 

looking at it from both the attack and defense sides: first a 

basic form of click fraud was implemented, and how to defend 

against it. Then, an attack to surpass this new defense, and a 

new method of detection for this newest attack type, and so 

on. 

 

T 
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A. Defense 

The main method of detecting frauds the system uses are 

the Rules, as previously discussed. The idea is to test every 

received click with every rule and the system will then be able 

to determine whether the click is suspicious. By its turn, rules 

fall into two categories related to the system where they're 

applied: online or offline. 

The first part of the system that requests pass through is the 

URL Hash, whose purpose is to prevent people from using the 

same ad multiple times without accessing a publisher's site. 

When the ad's javascript is loaded, the URL presented to the 

user will depend on identifiers the system gets from their 

HTTP Request, like IP and UserAgent field. Those values will 

be hashed together with a private key, which should be 

changed periodically, to create a unique URL for the user. 

When the request for the ad's URL is received, the hash is 

recomputed and compared with the one in the URL. If they 

match, the user will access the normal page as usual. 

Otherwise, they will receive an error page. This whole process 

is illustrated in Figure 5. 

 

 
Fig. 5.  Process to give the user a unique ad URL. 

 

The user will then go through pages as already mentioned, 

adRequest.html and redirect.html. This is done to obtain 

more information than would be possible from a single access, 

although each of the pages verifies different things on the 

user's access: 

● In the first page access, the request is passed through 

the HumanTimer, Blacklist, AcceptLang and DNT 

rules. HumanTimerRule is applied here since it 

assesses the time between the request for the ad's data 

and the click on it, while the other rules are applied 

here since they already have all the information 

necessary from a single request. 

● The rules UserAgent, Javascript and RedirectTime 

are used on the redirect.html page's request. These 

tests need or work better when executed with the 

information obtained from both user’s requests. 

 

The navigation that goes for the user within the ad 

network's domain, integral part of obtaining the information 

used by the rules, works as follows: After clicking on the ad 

with a valid URL, the user is redirected to the network's 

domain, namely to adRequest.html. This page, besides 

redirecting the user to the next page automatically, also sets a 

cookie and has a 1-pixel image to be loaded in it. On the 

second page, the cookie's presence is verified, and another 1-

pixel image is present, except this one is hidden, in a way that 

a normal browser would not load it. This second page redirects 

the user to the advertiser's site. The cookie's importance for 

the rule JavascriptEnabledRule was discussed in Section IV, 

while the images are there for the PagesLoadedRule. 

To connect both page requests as being from the same user, 

every access to the first page is stored, and when an access to 

the second page is received, it is matched with the earliest 

request with the same identifiers, such as the IP, UserAgent 

and AcceptLang fields. It is also checked if the time between 

these accesses is short enough; in this case, 3 seconds was 

established to be the maximum period of time between loading 

both pages for a normal user. 

Even if the defense system decides that a user is committing 

fraud, it will still work normally, sending the requester to the 

desired page. This happens for two main reasons:  

● Resilience against trial-and-error methods. If the 

system blocked every suspicious user and access, 

attackers would be able to use this info to verify if their 

attempts were successful or not, and make 

improvements to their attack methods accordingly.  

● Reduce the impact of false-positives. The system may 

wrongly accuse a normal user of being malicious; in 

this case, we don't want the user to be unable to go 

through with their browsing, as that would also hurt the 

advertiser who'd lose a possible client. 

 

Relatedly, when reporting to the announcer the system's 

results, the ad network should avoid specifying which clicks 

exactly were identified as fraud as suggested by Kitts et al. [7], 

and instead provide the percentage or the quantity of blocked 

clicks. This turns the system even    more resistant against 

malicious users, which may include advertisers interested in 

attacking the ad network's system for personal gain, while still 

giving legit advertisers a report on how well the service is 

working. 

 

B. Attack 

The bot created to test the system focuses on getting the 

highest number of clicks possible without being caught by the 

defense. It was developed in Python 3.6 like the defense 

system, and mainly uses the "requests" Python library to 

access the agents' sites as a client. At first the bot is relatively 

simple in its access strategy, which can be seen in Figure 6. It 

will initially access the publisher site normally, and once it 

obtains the ad's URL, it will call for bots in parallel to quickly 

access the ad many times, and those bots follow the normal 

navigation path independently from each. 

To emulate the progress a real attacker would go through 

while learning how the defense system works, the bot has 
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different configurations of modules, which alter how the bot 

goes through with its attacks. Some modules are counterparts 

to the rules presented, and they are: 

● NormalAccessModule: bot will access the publisher's 

site normally to obtain only valid ad addresses. This 

was the first module to be implemented, as without it 

the bot won't even be able to access the pages that will 

redirect it to the advertiser's site. 

● HumanTimerModule: the program now waits a 

reasonable and humanly possible time before executing 

each click (roughly 0.6 seconds). This prevents 

detection from techniques that would notice the time 

between each click is unrealistically short for a normal 

person. 

● HeadersModule: uses legitimate, pre-defined HTTP 

headers to simulate what would be expected from a 

user with a browser. 

 

 
Fig. 6.  Basic bot setup. 

 

● DNTModule: adds a valid DoNotTrack HTTP header 

to the bot's requests. This module is separate from the 

previous one because, while the headers from the 

previous module are expected from every user, a 

header such as DNT is optional and only used by 

normal users in certain circumstances. 

● WideAccessModule: the bot will access every link 

passed by the HTML pages received from the ad 

network domain. This is meant to be a measure against 

a defense technique that checks if the user has accessed 

expected links and files, given that many bots will not 

load things such as images, since they're useless for 

their objectives. 

● SelectiveAccessModule: an extension to the 

WideAccessModule, which prevents the bot from 

accessing links a normal user would have no access to, 

such as images hidden in the HTML code. This further 

enhances the bot's attempt to browse as a normal user 

with a browser would. 

● RandomTimeModule: adds a pseudo-random amount 

of time between clicks to turn pattern recognition more 

difficult; 

● CookieModule: this module makes the bot store 

cookies sent by the pages correctly; 

● CompleteAccessModule: further extending on the 

SelectiveAccessModule, this module makes the bot load 

all pages in ways that are expected from a normal user, 

such as loading ad images and page icons. Those types 

of files may be ignored by less advanced 

configurations, since they aren't part of any of the ad 

network's domain's pages, or part of the click process. 

 

Notice that many of the modules were done with knowledge 

that an attacker might take a long period of time to discover if 

specifically targeting the system, such as figuring out if the 

system is blocking off their clicks because the time between 

each access is too short. 

VI. TESTS AND RESULTS 

O test the defense system, the developed bot was put 

against it, with different combinations of modules 

enabled, and finally with all modules active at once. 

Ultimately the system could identify all the attack attempts as 

frauds, but a low-frequency attack attempt would have been 

able to go undetected, as the system's rules don't individually 

address infrequent but continuous fraud attempts (more on that 

in the final section, VII). 

Tests were run on a Windows 10 operational system. The 

servers that represent the three online advertisement agents 

(publisher, ad network and advertiser) and the bot all ran in a 

local network, using different ports each to simulate the 

different site domains that would be required for the testing. 

The three agent's servers work in a normal way, being able to 

respond to any HTTP Request of the GET type that they 

receive, displaying their respective pages. 

The bot's attacks are called 6 times, each time with a 

different set of modules, which will from now on be referred 

to as "configurations". These configurations are defined by 

simple text files with values 1 ("on") or 0 ("off") for all 

possible modules; this is done to represent the degree of 

complexity of the simulated attacks. Table II shows how the 

configurations are all set, with the value "1" meaning that the 

module is activated, while "0" meaning the opposite, and the 

roman numerals representing each configuration. 

 
 

 

 
 

 

 

T 
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TABLE II 

MODULES PRESENT IN EACH CONFIGURATION 

 
 

For the bot itself, three parallel threads are used for every 

attack attempt. Given that each access is registered as a new 

click, this would lead to better and quicker results for the 

attacker, as explained before in Subsection V.B. 

Table III shows the chosen weight values for all the 

indicative rules. Those values aren't definitive or optimal, but 

were picked in a way that establishes the relative importance 

of each indicative rule if compared with the others. 

 
TABLE III 

WEIGHTS USED FOR EACH RULE DURING TESTING 

 
 

The first part of the test was to see if the system would 

incorrectly label a real user as a fraud, and for that the click 

process was done twice through the Firefox 59.0.1 (64-bit) 

browser. Figure 7 shows the traffic captured between the 

servers during the 2 accesses. For this and the next images 

showing the traffic captures, the following color code is used: 

 

● Purple captures are from the publisher's site. 

● Blue captures show the ad network. 

● The darker blue tones show the 2 accesses that 

configure a click, namely for the pages adRequest.html 

and redirect.html. 

● Finally, the advertiser's domain is represented by 

orange. 

 

Table IV shows the details of some of the packets sent to 

the ad network's server during the click process, and Table V 

shows results for every rule test the click went through. A 

value of 't' means it passed the test, while 'f' means failure. The 

click will be considered a fraud if it either fails a decisive rule 

or gets a score below 0.5. As they show, the real user passed 

through all online tests without issues. 

On the first attack, seen in Figure 8, note that bots are 

identified as frauds as soon as they access the first page on the 

network's domain. Given that in this configuration the bot 

does not use expected HTTP headers, the bots fail on the 

AcceptLangRule, as Tables VI and VII show. With this 

attack's report and the following ones, only one of the clicks' 

status is shown in the table unless stated otherwise, as the 3 

parallel clicks will, for the most part, have the same exact 

results. 

 

 
Fig. 7.  HTTP Traffic from 2 ad clicks via browser. 

 
 

TABLE IV 

REQUESTS FROM THE BROWSER 

 
 

 

TABLE V 
SYSTEM RESULTS FOR A REAL USER 

 
 

 
Fig. 8.  HTTP Traffic from the first bot configuration. 
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TABLE VI 
REQUESTS FROM THE FIRST CONFIGURATION 

 
 

TABLE VII 
REQUESTS FROM THE FIRST CONFIGURATION 

 
 

With the bot's second configuration, attack attempts in 

Figure 9 were once again identified by the system. In this case, 

the first bot managed to pass through the first page's tests, but 

failed for rules JavascriptRule and RedirectTime right after. 

The other 2 bots were identified in the first page thanks to the 

HumanTimerRule, as they accessed the ad link way too 

quickly for it to be done by a legitimate, human user. The 

reports are present at Tables VIII and IX. Note that in this case 

the report on all 3 accesses is shown. 

 

 
Fig. 9.  HTTP Traffic from the second bot configuration. 

 
 

TABLE VIII 
REQUESTS FROM THE SECOND CONFIGURATION 

 
 

 

 

 
 

 

 
 

 

 
 

 

TABLE IX 
REQUESTS FROM THE SECOND CONFIGURATION 

 
 

In the following test, the bot used the following modules: 

NormalAccess, HumanTimer, Headers, DNT and WideAccess. 

Figure 10 shows the traffic, and from that it can be noted the 

difference that the WideAccessModule introduces: the bot now 

sends requests for the images in the network's pages, including 

the ones that a normal user wouldn't (hidden.png). However, 

the bot does not pass the tests, as in Tables X and XI. It fails to 

pass rules JavascriptEnabled and RedirectTime, which puts 

the score just under 0.5. 

 

 
Fig. 10.  HTTP Traffic from the third bot configuration. 

 
 

TABLE X 

REQUESTS FROM THE THIRD CONFIGURATION 
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TABLE XI 
REQUESTS FROM THE THIRD CONFIGURATION 

 
 

Verifying the results from Table XIII it is noticed that the 

scores and overall report from the system are very similar, 

contrasting with the traffic differences seen in Figure 11 and 

Table XII, which derive from the SelectiveAccessModule. This 

happens because, even with the new module to improve 

navigation, the attack still doesn't take any measures against 

the JavascriptEnabled and RedirectTime rules. 

 

 
Fig. 11.  HTTP Traffic from the fourth bot configuration. 

 
TABLE XII 

REQUESTS FROM THE FOURTH CONFIGURATION 

 
 

TABLE XIII 
REQUESTS FROM THE FOURTH CONFIGURATION 

 
 

From the fifth configuration onwards, the online 

analysis alone could not identify the fraud, which can be 

visualized in the report from Table XV. In the report, row '15' 

shows the results before the offline analysis acted, and the 

'15*' row is for the results after. In this configuration, the 

attacker uses a CookieModule and reads through the javascript 

code to bypass the JavascriptEnabledRule. However, it still 

fails the RedirectTime rule, and is reported as fraud by both 

the PagesLoaded and TimePeriod offline rules. 

 

 

 
Fig. 12.  HTTP Traffic from the fifth bot configuration. 
 

TABLE XIV 

REQUESTS FROM THE FIFTH CONFIGURATION 

 
 

TABLE XV 
REQUESTS FROM THE FIFTH CONFIGURATION;  

BEFORE AND AFTER OFFLINE ANALYSIS 

 
 

For the final test, the bot has all modules activated, and its 

traffic capture is in Figure 13. As is reported inTables XVI 

and XVII, the bot passes through the PagesLoadedRule now, 

but is still detected by both TimePeriod and RedirectTime 

rules, giving the clicks a fraud status. 

 

 
Fig. 13.  HTTP Traffic from the sixth bot configuration. 
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TABLE XVI 

REQUESTS FROM THE SECOND CONFIGURATION 

 
 

TABLE XVII 

REQUESTS FROM THE SIXTH CONFIGURATION 

 
 

Finally, after running all the tests it is clear that the system 

managed to correctly detect every fraud attempt from the 

attack simulation. Although the attacks managed to bypass 

more rules each time, the high weights of the RedirectTime 

and TimePeriod rules were key in identifying the frauds 

correctly. This also goes to show the importance of weights: 

if, for example, RedirectTime had a weight of 2 instead of 3, 

and TimePeriod had a weight of 1 instead of 2, the sixth and 

last attack configuration would have had a score higher than 

0.5, and thus wouldn't have been identified as fraud. 

 

VII. CONCLUSION 

ESULTS obtained match the expectations. Although not 

yet tested in a real environment, the system has shown 

good performance against different types of attack, with at 

least two of the rules identifying each of those attempted 

frauds. All the attacks attempted by the bot user were 

identified, but it is emphasized the importance of selecting 

appropriate values for rules' weights, as different values for 

key rules would have led to the system not correctly 

classifying attacks as such. The chosen weights for our tests 

aren't the only possible values and in a real world scenario 

through experimentation would be necessary. 

Low-frequency attacks are still a threat as malicious clicks 

spread over long time intervals will most likely not be 

automatically detected, and if done in a large scale with 

multiple IP addresses could affect the agents protected by the 

system. There are however issues with those methods of attack 

themselves, namely obtaining access to this significant 

number of IPs and obtaining economical return from simpler 

attempts of the attack, given the low return for a single click. 

Even with the successful elaboration of the system 

proposed, click fraud still poses challenges for defense 

systems. For instance, lack of public data sets about click-

related subjects, in particular samples of previously identified 

click frauds, and, in the case of defense systems for ad 

networks in particular, having no reliable access to user 

behavior parameters such as mouse movements or time spent 

on different pages within a domain, essential data for detecting 

abnormalities with site accesses, given how such things carry 

inherently human characteristics to them and would be very 

challenging to replicate with a fake user. 

Although this work focused on click fraud detection, the 

approach adopted is not entirely dependent on the attack 

specifics and might be extended to click bot detection in 

general with a subset of the rules used. 

 

A. Future Work 

This is ongoing work and there are several possibilities for 

improvement. Some of them are presented below. 

 

1) LoadingBehaviorRule 

One type of rule that could still be added is a verification of 

user behavior during the loading period that's spent in the two 

domain pages, before the user is redirect to the advertiser, and 

would consist of verifying for activities such as mouse events 

and mouse movements. This rule would have a negative 

weight, as described on Section IV, given that a normal user 

might fail the test simply by not interacting with the computer 

during the brief loading period, but passing the rule does 

indicate that the user is likely legitimate. 

To store the relevant information about the users' accesses, a 

simpler version of the report described for the rule 

ExternalBehaviorRule might be used, as seen on Table XVIII. 

 
TABLE XVIII 

REPORT TO BE USED FOR LOADINGBEHAVIORRULE 

 
 

2) Browser Functionality Detection  

Another feature that could enhance detection is to look for 

browser functionalities on users. Bots generally aren't 

implemented with browsers. To reminisce, one of the most 

common click fraud methods involves infecting computers of 

internet users, and sending instructions to the infected 

machines so they can operate on the background without 

knowledge of the computer's owner. This is ideally 

implemented with light-weight and quick programs, so the 

person using the computer doesn't notice it. 

Based on that and the report from Xu et al. [2], the idea is to 

make use of a list of functionalities considered universal in 

various different recent browsers, covering 5 common 

browsers (namely, Chrome, Firefox, Internet Explorer, Safari, 

Opera). 

 

3) Browser Fingerprinting 

This is similar to the technique shown in the previous 

subsection, in that it revolves around sending requests to a 

R 
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user and asking for them, or more specifically their browser, 

to complete certain tasks, such as rendering a three-

dimensional object. The answer can provide information that 

differs between unique users and browsers, and thus is useful 

for authentication and identifying malicious users. 

Relatedly, there is also system fingerprinting. With a similar 

focus, this field tries to identify distinct users based on their 

operational system and its characteristics. Adding such 

techniques would be a viable way of identifying even complex 

frauds that are being carried out by a single machine, or many 

distinct machines being used repeatedly, for example. 

 

4) Machine Learning 

The system was already made with possible machine 

learning implementations in mind for the future. Many aspects 

can be optimized and automatized, such as individual rule 

weights and rule configurations, which could be tested against 

datasets of already identified traffic, including frauds, and 

even lead to discovering configurations that work better in 

specific situations over others. Even more advanced 

algorithms could experiment with identifying patterns in the 

datasets themselves and propose new rules to be used. 

 

5) Real-World Scenarios 

Finally, modifying the system for real-world scenarios 

should be considered, as the code developed, although made 

with scalability in mind, was not tested against massive 

request quantities. This could present performance and 

maintainability issues.  

Along with this, there may be other problems that were not 

properly addressed throughout the development of the system, 

and future, more advanced attacks that the system would not 

be prepared to defend automatically against might be created 

and utilized. 
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