
ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 27

Abstract—Click fraud detection consists of identifying the

intention behind received clicks, given only technical data and

context information. Reviewing concepts involved in click fraud

practices and related work, a system that detects and prevents

this type of fraud is proposed and implemented. The system is

based and implemented on an ad network, one of the 3 main

agents in the online ad environment, and for its validation, 3

servers were used, representing the publisher, the ad network

with the system implemented and the announcer, and a bot that

attempts to commit a click fraud.

Index Terms—Click fraud, online security, bots, system

architecture

I. INTRODUCTION

HE publicity domain grows continually by the day. One

of the reports from eMarketer [1] states an estimated

growth of nearly 16% for the digital advertisement area in the

United States compared to the previous year, summing almost

83 million dollars. That's equivalent to roughly 40% of the

overall investment in advertising, estimated as 205.06 billion

dollars. With these numbers, it is possible to see the

importance and interest gained by the area recently, which

includes related technical aspects, such as click fraud

detection.

A. Motivation

Click fraud detection is an inherently nebulous field. In

broad terms, it consists of identifying the intention behind the

received clicks, given only technical data (such as the IP

address and other information provided by HTTP requests)

and contextual information (previous accesses from the same

IP, for example). Thus, malicious click detection involves

comparing every access behavior with what's expected from

normal users, but, that is difficult to formalize and context

dependent behavior is nondeterministic and context

dependent.

Moreover, current literature is lacking in certain aspects.

Many studies focus on the advertiser's side, such as [2], and

few on how to apply click fraud detection techniques on ad

This work was supported in part by the Institutional Security Office of the

Presidency of the Republic of Brazil (GSI/PR) Grant 002/2017.

Paulo S. Almeida was with the Computer Science Department,

Universidade de Brasília, Brasília, Distrito Federal. He is now with
Laboratório LATITUDE, Universidade de Brasília (e-mail:

paulo.almeida@redes.unb.br).

João J. C. Gondim is with the Computer Science Department,
Universidade de Brasília, Brasília, Distrito Federal (e-mail: gondim@unb.br).

networks, the middle agent between the publisher and

advertiser, all of which are parties involved in the online

publicity area (see Section II); and relatively shallow

elaboration on the technical details and inner workings of

established click fraud detection systems, giving little insight

on the design decisions and compromises that went on behind

the creation of such applications.

B. Objective

The objective is to propose a system of click fraud detection

and prevention applied to an ad network. Ad network's interest

in preventing frauds lies in their relationship with advertisers:

the latter wishes for the best click quality possible (or, the

biggest number of interested users over the least of resources

used possible), and directly pays the ad network for such

traffic. Bad clicks directly hurt the advertisers' goals, and thus

their wish to interact with networks that may bring such clicks.

The approach is to provide is to provide an introduction into

how one might implement a system as described above, but

not necessarily for just an agent in the area, going into details

such as design choices and architecture.

C. Outline

Throughout this report the path taken to create the defense

system will be elaborated in detail. In Section II - Technical

Review, is an overview of basic concepts necessary for a good

understanding of the rest of the report, including the online

advertisement agents and previous studies on similar subjects.

Section III - Problem Description goes over the problems that

we aim to address throughout the study and development

process like usual click fraud types. The theory and concepts

brought up and expanded upon, or proposed by this study, like

the various rules and their classifications, to create the

system's theoretical basis, are in Section IV - Proposal.

Continuing that, Section V - Implementation talks about the

implementation details that had to be considered on the

process of programming the system's theory, including

creating an attacking bot to test the system. Those are present

in Section VI - Tests and Results, which shows and explains

the results obtained. Section VII - Conclusion serves as a

closing off for the study and compares the results with

expectations, along with suggestions for system improvement.

II. TECHNICAL REVIEW

O be able to elaborate on the process of creation and

design of the system, a solid understanding of the online

Click Fraud Detection and Prevention System

for Ad Networks

Paulo S. Almeida, João J. C. Gondim

T

T

28 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

publicity field's inner workings is required, along with a

glance at what studies have already been published on the area

and identify lacking parts in order to propose new system that

can be relevant.

A. Online Advertisement Concepts

Online advertisement involves primarily four agents [3] [4]:

● The advertiser or announcer wishes to publicize

their product or service to a target public that may be

interested in consuming what the announcer has to

offer.

● A publisher is someone who has their own publicity

platform, such as a site or a blog, and is able to show

the advertiser's product to the visitors of said platform.

Often the content in the publisher's platform and that

of the advertiser's product are of similar nature, though

not always.

● Users are any visitors to the publisher's website, who

may be interested and click on the advertiser's ad,

perhaps even buying their product or otherwise doing

a directly financially relevant action for the advertiser,

thanks to the publisher's publicity.

● At last, the ad network is a middleman between the

advertisers and publishers. Their objective is to

connect advertisers interested in the publicity with

publishers willing to offer such service. Some ad

networks take a dynamic approach by deciding which

ad to show for a given user accessing a given

publisher's site.

Part of the growing interest in the area comes from the

profit it may generate for any of the parts. The most common

scenario is for the advertiser to pay for the services of either

the publisher or the ad network (which in turn pays the

involved publishers). How exactly this payment is measured

varies, and different advertisers are interested in different

types of audience and interactions with their ads. Usual

payment methods are:

● Pay-Per-Impression (PPI), in which the advertiser is

interested in how many users simply visualize their ad.

Impressions are for the most part trivial to obtain, and

hardly correspond with any gain for the advertiser by

themselves, so the payment received per impression is

extremely low and this method to be less common.

● Pay-Per-Mille (PPM) is a more utilized variant of PPI,

where the payment is given based on how many

thousands of views the ads obtained, making this

method a more realistic payment option.

● Pay-Per-Click (PPC) cares about the quantity of clicks

the ads have received. Often payment is based on the

click-through rate that the publisher or ad network

expected to get for this specific ad. This method is the

focus of this study.

● A stricter method is Pay-Per-Conversion or Pay-Per-

Action (PPA), where payment only happens based on

the number of users which actually perform a certain

action within the advertiser's domain, such as buying a

product or signing up on their site.

An example of a PCC method and how it works is in Figure

1. The user visits the publisher's site (1), and then asks for the

ad data that's provided by the ad network to the publisher's site

(2). The network will proceed by choosing the ad they believe

the user is more likely to be interested in (3,4) and sends the

data to the user (5). If the user is indeed interested by the ad,

they will click it, be redirected to the ad network's domain (6),

and then to the advertiser's site (7). After this process, the

announcer will eventually pay the ad network for redirecting a

user to their site (8), and the ad network will in turn also pay

the publisher for reaching to the user (9).

Fig. 1. Example of a possible PPC scheme.

Considering PPC the payment method, click fraud is the

attack of interest. A click fraud happens when a malicious

agent executes an illegitimate click on an ad, which is a click

that comes from a user that doesn't have real interest in what's

being advertised. Clicks may be generated manually (by hiring

people to click repeatedly on certain ads), or, more often,

automated (using bots).

B. HTTP Protocol

Understanding the nuances of the HTTP protocol is also

important for understanding how the developed system works.

HTTP stands for HyperText Transfer Protocol and is the base

upon which a big part of internet applications are built. The

many reports from the RFC 7230 family [5] [6] are the official

source for the protocol's inner workings and other details. The

Hypertext Transfer Protocol (HTTP) is a stateless application-

level request/response protocol that uses extensible semantics

and self-descriptive message payloads for flexible interaction

with network-based hypertext information systems. One of the

key aspects of this definition is HTTP’s statelessness, which is

to say, there should be no persistence of data between one

HTTP communication and the next, even if they're between

the same parties.

Communication carried through HTTP takes form of

someone sending an HTTP Request, which must be answered

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 29

with an HTTP Response from the request's target. HTTP

Request packets are essentially the only input to identify

malicious click, apart from click context. They provide

essential information such as the IP address and headers from

their sender.

Cookies, although not part of HTTP, are another important

component in web applications. They are a way of retaining

state on communications with the HTTP Request's sender, and

consist of a key and value pair, both of which can be any

string the Request's receiver wishes. The presence of certain

cookies in new HTTP Requests can be verified, allowing the

receiver to take different options depending on the cookie's

presence or values. Their use in the system will be clarified in

Sections IV and V.

C. Related Work

Kitts et al. [7] present an overview on the Microsoft

adCenter system and some of the design aspects of it.

Although precise details aren't provided, a good idea of the

overall workings of a defense system applied to an agent that's

both publisher and ad network is given. Xu et al. [2] provide a

detailed report on the techniques used for a fraud detection

system on the advertiser side, which are key to a better

understanding on how one would go about creating similar

applications and general detection techniques. However, it is

evident the lack of reports on systems that are used by ad

networks, and a lack of elaboration on the more technical

details and implementations of the tools used to detect and

prevent click frauds.

On click fraud attack methods, [8] is a report about the inner

workings of a click fraud botnet, and presents the concept of a

low-frequency attack, a click fraud attempt that occurs over a

long period of time, using a small number of clicks over short

time slots, like 3 fake clicks per day, as to not be detected by

methods that look at expected click rates for a given ad. Other

attack reports include [9], [10] and [11], all of which go over

complex fraud cases that happened throughout the years. Both

concepts of botnets and low-frequency attacks are explained in

section III.

III. PROBLEM DESCRIPTION

IVEN the scarce published material that focuses on click

fraud detection systems on ad networks, the main focus

will be on the development of a system for that purpose. A

dual approach is adopted: the idea is to consider an attack and

build the system around defending against this attack. Attacks

start simple and evolve in complexity, and so does system's

defense accordingly. This process goes on incrementally until

blocking off what's believed to be the most usual forms of

attacks.

Frauds, as already mentioned, can be done either manually

or with the use of automatized bots.

Click frauds committed by people, at their most basic,

would usually consist of the attacker accessing the publisher's

page, and from there clicking the ad or ads that they are meant

to. Improvements on this method of attack usually involve

scaling it by involving many hired attackers, all with different

computers, often within the same room or building, to raise

click throughput. Attackers could also be instructed to browse

the advertiser's page briefly, to better imitate a legitimately

interested client.

Looking at how a bot attacks, on the other hand, first

consider that the most basic way of registering a click is as an

access to a specific ad URL, and thus the most basic type of

fraud would be to simply go to the URL with a single HTTP

request. More complex forms of attack would make use of

patterns found in normal user behavior, namely expected

fields in the HTTP packets, accessing all the expected URLs

through the process, such as images, and not having a

consistent time difference between different accesses.

More sophisticated types of fraud use botnets. They are

networks of infected machines, previously exposed to some

type of malware meant to give some form of access to victims'

computers. Those machines receive instructions on how to

operate from a control server or from another infected

machine, which in turn may also receive its own instructions

from the main server or another module, and so on [8].

Attacks themselves are often conducted without knowledge of

the infected machine's owner, running in the background. Bot

malware may use the user's own behavior for fraud, such as

redirecting them from sites they intended to visit to sites the

attacker wishes to grant clicks. This effectively gives the

attack some degree of human characteristics, namely the

machine's owner's access behavior and a legitimate HTTP

packet, making this type of attack is difficult to identify. An

illustration of the attack can be seen in figure 2.

Fig. 2. Botnet attack with a compromised machine. Source: [12]

Other complex kind of fraud is the low-frequency attack.

One common detection technique is to analyze expected click-

through rate, a prediction on how many clicks an ad will

receive over a period, mainly during certain times of the day

and week, which is arrived at using advanced statistical

analysis [12] [13]. That technique would then be able to notice

unusual increases in activity for the ad it is analyzing. As

attackers usually have more to gain with a larger number of

G

30 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

clicks, this type of defense is very strong and will catch a good

amount of simpler attacks.

The low-frequency attack consists, then, of countering this

defense by only interacting with the ad very few times over

certain periods. Considerable time between each access makes

it difficult to detect frauds as they are happening, even by

professionals, and those attacks are often only detected months

after they've already started [8] [9]. The combination of

botnets and low-frequency attacks can be a challenge to

defense systems, since it might split the already small quantity

of accesses between different IP addresses with little trouble,

turning detection even more difficult.

IV. PROPOSAL

HE overall architecture of the system is based on the

proposal of [7]. Terms such as "rules" will appear in both

works, though they are not necessarily referring to the same

concepts. In particular, the rules JavascriptEnabledRule and

ExternalBehaviorRule in the system derive from the work of

Xu et al. [12], while the other rules (BlacklistRule,

HumanTimerRule, PagesLoadedRule, AcceptLangRule,

TimePeriodRule, UserAgentRule, DoNotTrackRule} e

RedirectTimeRule}) and their classifications are this work's

novel contribution.

Fig. 3 shows the system architecture. The system relies on

two parallel processes, each focused on one of the main

modules, Online Analysis and Offline Analysis. This division

of the analysis process is also based on the proposal by Kits et

Al [7]. The former process is directly responsible for what

happens when a HTTP request is received in the server and the

procedures that take place before a response is sent back to the

requester.

First, the URL requested is checked in the URL Hash

module, and if it's a valid URL, the request proceeds to the

Online Analysis. This part of the system passes the received

request through various online rules. After using the results

from the rules' tests to arrive at a conclusion on the legitimacy

of the click, the online analysis is completed and the request

data, along with the module status and results from rule tests,

are stored in the Database.

Fig. 3. System architecture.

The Offline Analysis process, on the other hand, takes

recorded requests from the database as input. The module

takes the offline rules from the Rules module, and, similarly to

the other process, runs the input through a series of tests from

the rules. After analyzing the requests with this other set of

rules, the offline analysis module may change the overall

status of the request, working as the final automatic step in

determining whether or not a click is malicious. Based on the

results, the module may also make changes in rules by

adjusting their impact on the overall analysis process, namely

with their weight parameter. The module can have Announcer

Reports to help arrive at a conclusion over click status. Those

reports focus on recording user behavior on the announcer's

web page and are used by the ExternalBehaviorRule.

Although the system works automatically without user

intervention, it is suggested that a team of security analysts

that might work on the system when necessary and would be

able to change the rules as they see fit, excluding or including

new ones, or reviewing and interfering on the offline analysis

module results if they judge it necessary, e.g. changing the

status of a request in the database.

The way users are redirected towards the desired site was

changed to properly collect access information. The process of

clicking on an ad and going to the advertiser's site usually

works as follows: the user visits the publisher's site, which

loads both the page from the publisher's domain and a

javascript file from the network. This javascript contains both

a link to the network's domain and an image of the ad. The

user may click on this image, which redirects them to the

network's page, which in turn redirects them to the

announcer's site. Our process is very similar, but there are 2

pages in the ad network domain that the user is redirected

through, called adRequest.html and redirect.html. This

allows the server to obtain much more information about the

user (further details on Section V).

A. Types of Rules

The main method of detecting frauds the system uses are

the Rules, as previously discussed. The idea is to test every

received click with every rule and the system will then be able

to determine whether the click is suspicious. Rules are divided

in two categories related to the system where they're applied:

online or offline.

● As their tests must be executed in real time and at every

HTTP request received, online rules are quick and

generally less impacting by design. Although it may

not make a difference for smaller sites, those with high

traffic might find their ability to answer to clients

quickly impacted by the system's presence, which

should be avoided. Another constraint that comes with

these rules is that they must only use information that

has been acquired from the user's immediate access,

such as the HTTP request received.

● Offline rules, in contrast, are only applied over

T

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 31

requests that have already been analyzed by the online

rules. This type of rule uses mainly the database, and

thus more extensive tests on clicks, like identifying if

an IP address loaded all expected files from the domain

or looking for unusual access patterns to the ad. This

type of rule may also take as long as needed to execute,

since its function is not related to the user's experience.

Rules are also classified in two other groups in relation to

how critical for the click analysis they are. They are divided

between decisive rules and indicative rules.

● If a click fails to pass at a decisive rule, it is

automatically considered a fraud. These types of rules

must be only those that verify aspects that a normal

user will never miss out on, such as having HTTP

request fields with expected values.

● Indicative rules are, then, the rules that give a

probability that a click may be illegitimate, which is to

say, if it fails at one of these rules, it will not be certain

that it is a malicious click. Such rules also have a

weight factor to each of them. It defines how relevant

the rule is for the overall legitimacy of the user and

may be adjusted as necessary. There are also negative

weights, which mean that failing the rule's test does not

affect the user's rating negatively, but passing them

improves it.

Rules are described below, starting with the decisive and

online rules, and elaborate on what they are meant to verify

along with the design process behind them:

1) BlacklistRule

The system maintains a table with blacklisted IPs that have

had too many frauds attributed to them. This rule simply

compares the requester's IP address with what's already on the

list, and accuses them of fraud if there's a match. It will also

block off other unexpected IP addresses, like invalid IP codes

or the IP address from the publisher themselves.

2) HumanTimerRule

For this rule, the idea is to see if the user's interaction with

the ad is humanly possible, so the time difference between the

ad's visualization and the user's click is verified. If they're

quicker than a certain threshold, they fail the test. The

threshold is set to 0.5 seconds which takes into account

average human reaction times, as described below.

Thorpe et al. [14] point to a value of 0.15 seconds for the

minimum time between the eyes' visualization and the brain

identifying the image, while Census at School Canada [15]

and Human Benchmark [16] show similar results. Fig. 4

shows a graph where the highest number of visitors reacted at

around 260ms. Since this rule is set to only identify users with

inhumanly fast click times, the value decided upon needed to

be below the average, as not to accuse real people, and was set

for 0.2 seconds.

Fig. 4. Quantity of users versus reaction time. Source: [16]

This value alone does not consider the time it would take to

realize interest with the content of the ad itself. 0.3 seconds

was estimated as the time it would take for the user to realize

said interest in the ad. Note that 0.3 seconds for the user's

interest is a small amount of time, so it is estimated that the

threshold could be changed to higher values, like 1 or even 2

seconds, without blocking off real clicks.

3) AcceptLangRule

As real users are expected to be using web browsers to

access the ad, this rule is used to verify the value of the

AcceptLang header in the HTTP Request. Browsers usually

have this field set in the same way for every request sent from

it, so the rule will test if the header is valid and not empty.

This rule is decisive, in contrast to the DNTRule in Subsection

IV.A.7, because an empty or otherwise incorrect header field

implies that the user isn't using a normal browser at all and is

thus most likely not legitimate.

4) PagesLoadedRule

This rule is decisive and offline, as it needs to have the log

of accesses to the relevant domain pages to be properly

executed. The idea is to verify every user's access history in

relation to the ad network and see if it's similar to how a

normal user is expected to behave. For this, the rule will

search for pages that are expected to be loaded, like the ad's

image and images present within the ad network's redirecting

pages, and also pages that aren't to be loaded, like hidden

image links (see Subsection V.A for implementation details).

Not having loaded those pages will identify the user as a fake.

Indicative and online rules are:

1) JavascriptEnabledRule

Xu et al. [2] mentions that at least 98% of internet users

have javascript enabled and indicates its presence as a sign of

click legitimacy. To detect whether or not a given user has it

disabled, HTTP cookies are used. To do this, a cookie is set on

the first redirecting page of the ad network's domain through a

javascript code. Cookie presence is verified on the access to

the second page, and if it is indeed sent by the user, they will

pass this test.

According to [17] 3.7% of users block cookies and an

insignificant amount blocks javascript, while more recently

[18] gives a 99.93% usage percentage for javascript and 98%

for cookies. This indicates that it's unlikely for a real user to

fail this test, but still possible.

32 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

2) UserAgentRule

A rule that, in a similar way from the AcceptLangRule,

verifies if the received requests contain a certain HTTP

header; in this case, a valid UserAgent field, basically seeing if

the value matches what's to be expected from a normal

browser. A small weight for this rule is suggested, as it is easy

for an attack to merely change the field's value and there's a

possibility a real user would be using a browser whose

UserAgent isn't accounted for in the system. The latter case is

also why this rule is defined as indicative, rather than decisive;

a user using a browser that's not well-known could have their

click blocked in this case.

3) DoNotTrackRule

DoNotTrack or DNT is an HTTP field that's used for

browsers in private mode and indicates for the sites being

visited not to maintain user information. Since there is no

particular reason for an attacker to worry about setting up this

field, as they most likely would be using proxies in the first

place, the presence of this field is a good way of identifying a

legitimate user. Since passing in this test increases the

likelihood of legitimacy for the click, and failing it does not

indicate suspect behavior, the rule should have a small and

negative weight (as explained earlier in this section).

4) RedirectTimeRule

While conducting the tests, it was noticed that the time it

took for a browser to process a redirect response was much

quicker than for the attack bot. The browser could answer the

redirect triggered by the "meta refresh" field in the HTML

page with a value of 0 in 0.5 seconds, the bot used for testing

was unable to react in less than 1.1 seconds. This led to the

creation of this rule, which looks at the time between

accessing the first and second pages from the network domain,

and fails whenever the user takes more than the expected time.

Although the bot designed and used in tests did not manage to

bypass this rule, it should not be decisive, as the redirect time

for meta refresh will depend on browser, and users with older

machines or less used browsers may fail it; even then, a

relatively high weight for this rule is suggested.

Finally, the indicative and offline rules are the following:

1) TimePeriodRule

As discussed, one of the ways of identifying abnormal

accesses is to check for user behavior that differs significantly

from the normal. To achieve that, this rule looks over the

received requests on the database and finds odd patterns.

Constant and quick accesses are clear fraudulent behavior, and

in order to defend against that, two ways of identifying such

patterns that this rule checks for are defined:

● The first is to look for three or more clicks by the same

IP in under a short period of time (we opted for 30

seconds, but the value could be changed).

● The other method is to search for five or more clicks

within a longer period of time, (10 minutes, but again

changeable) and check if the interval between them is

fairly constant.

Failing either or both of those tests leads to failing the rule,

which is decisive because it verifies for extreme behavior that

is very unlikely to happen with real clicks.

2) ExternalBehaviorRule

Behavior logs are an important part of fraud detection

systems. One issue that arises from designing a defense

system for an ad network is that it doesn't have access to the

user's actions once they are within the advertiser's domain, and

thus we're unable to collect information based on aspects that

are significantly hard to forge, like mouse movements and

time spent on pages.

For this rule we count on the support of the advertiser, who

is motivated to help the ad network's defense, as advertisers,

who in theory pay for publisher services and ad networks will

often suffer the biggest losses from fraudulent attacks. Thus,

the advertiser will log certain aspects of the visit from any user

that comes from the ad network's domain, and organize this

data to send it back to the ad network in the format shown by

Table I.

TABLE I

USER BEHAVIOR REPORT FROM THE ADVERTISER

All categories in the table except for the last one should be

stored in 2 separate counts each: one for the initial page, and

another for the other pages in the site. A user that's truly

interested will likely have high values in most of the fields

collected, while a fraudulent one will typically not interact

much with any pages, or only with the first one.

V. IMPLEMENTATION

HE whole project was coded in Python 3.6, and the

persistent data was stored in a database in PostgreSQL

9.6.

As already mentioned, the problem was approached by

looking at it from both the attack and defense sides: first a

basic form of click fraud was implemented, and how to defend

against it. Then, an attack to surpass this new defense, and a

new method of detection for this newest attack type, and so

on.

T

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 33

A. Defense

The main method of detecting frauds the system uses are

the Rules, as previously discussed. The idea is to test every

received click with every rule and the system will then be able

to determine whether the click is suspicious. By its turn, rules

fall into two categories related to the system where they're

applied: online or offline.

The first part of the system that requests pass through is the

URL Hash, whose purpose is to prevent people from using the

same ad multiple times without accessing a publisher's site.

When the ad's javascript is loaded, the URL presented to the

user will depend on identifiers the system gets from their

HTTP Request, like IP and UserAgent field. Those values will

be hashed together with a private key, which should be

changed periodically, to create a unique URL for the user.

When the request for the ad's URL is received, the hash is

recomputed and compared with the one in the URL. If they

match, the user will access the normal page as usual.

Otherwise, they will receive an error page. This whole process

is illustrated in Figure 5.

Fig. 5. Process to give the user a unique ad URL.

The user will then go through pages as already mentioned,

adRequest.html and redirect.html. This is done to obtain

more information than would be possible from a single access,

although each of the pages verifies different things on the

user's access:

● In the first page access, the request is passed through

the HumanTimer, Blacklist, AcceptLang and DNT

rules. HumanTimerRule is applied here since it

assesses the time between the request for the ad's data

and the click on it, while the other rules are applied

here since they already have all the information

necessary from a single request.

● The rules UserAgent, Javascript and RedirectTime

are used on the redirect.html page's request. These

tests need or work better when executed with the

information obtained from both user’s requests.

The navigation that goes for the user within the ad

network's domain, integral part of obtaining the information

used by the rules, works as follows: After clicking on the ad

with a valid URL, the user is redirected to the network's

domain, namely to adRequest.html. This page, besides

redirecting the user to the next page automatically, also sets a

cookie and has a 1-pixel image to be loaded in it. On the

second page, the cookie's presence is verified, and another 1-

pixel image is present, except this one is hidden, in a way that

a normal browser would not load it. This second page redirects

the user to the advertiser's site. The cookie's importance for

the rule JavascriptEnabledRule was discussed in Section IV,

while the images are there for the PagesLoadedRule.

To connect both page requests as being from the same user,

every access to the first page is stored, and when an access to

the second page is received, it is matched with the earliest

request with the same identifiers, such as the IP, UserAgent

and AcceptLang fields. It is also checked if the time between

these accesses is short enough; in this case, 3 seconds was

established to be the maximum period of time between loading

both pages for a normal user.

Even if the defense system decides that a user is committing

fraud, it will still work normally, sending the requester to the

desired page. This happens for two main reasons:

● Resilience against trial-and-error methods. If the

system blocked every suspicious user and access,

attackers would be able to use this info to verify if their

attempts were successful or not, and make

improvements to their attack methods accordingly.

● Reduce the impact of false-positives. The system may

wrongly accuse a normal user of being malicious; in

this case, we don't want the user to be unable to go

through with their browsing, as that would also hurt the

advertiser who'd lose a possible client.

Relatedly, when reporting to the announcer the system's

results, the ad network should avoid specifying which clicks

exactly were identified as fraud as suggested by Kitts et al. [7],

and instead provide the percentage or the quantity of blocked

clicks. This turns the system even more resistant against

malicious users, which may include advertisers interested in

attacking the ad network's system for personal gain, while still

giving legit advertisers a report on how well the service is

working.

B. Attack

The bot created to test the system focuses on getting the

highest number of clicks possible without being caught by the

defense. It was developed in Python 3.6 like the defense

system, and mainly uses the "requests" Python library to

access the agents' sites as a client. At first the bot is relatively

simple in its access strategy, which can be seen in Figure 6. It

will initially access the publisher site normally, and once it

obtains the ad's URL, it will call for bots in parallel to quickly

access the ad many times, and those bots follow the normal

navigation path independently from each.

To emulate the progress a real attacker would go through

while learning how the defense system works, the bot has

34 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

different configurations of modules, which alter how the bot

goes through with its attacks. Some modules are counterparts

to the rules presented, and they are:

● NormalAccessModule: bot will access the publisher's

site normally to obtain only valid ad addresses. This

was the first module to be implemented, as without it

the bot won't even be able to access the pages that will

redirect it to the advertiser's site.

● HumanTimerModule: the program now waits a

reasonable and humanly possible time before executing

each click (roughly 0.6 seconds). This prevents

detection from techniques that would notice the time

between each click is unrealistically short for a normal

person.

● HeadersModule: uses legitimate, pre-defined HTTP

headers to simulate what would be expected from a

user with a browser.

Fig. 6. Basic bot setup.

● DNTModule: adds a valid DoNotTrack HTTP header

to the bot's requests. This module is separate from the

previous one because, while the headers from the

previous module are expected from every user, a

header such as DNT is optional and only used by

normal users in certain circumstances.

● WideAccessModule: the bot will access every link

passed by the HTML pages received from the ad

network domain. This is meant to be a measure against

a defense technique that checks if the user has accessed

expected links and files, given that many bots will not

load things such as images, since they're useless for

their objectives.

● SelectiveAccessModule: an extension to the

WideAccessModule, which prevents the bot from

accessing links a normal user would have no access to,

such as images hidden in the HTML code. This further

enhances the bot's attempt to browse as a normal user

with a browser would.

● RandomTimeModule: adds a pseudo-random amount

of time between clicks to turn pattern recognition more

difficult;

● CookieModule: this module makes the bot store

cookies sent by the pages correctly;

● CompleteAccessModule: further extending on the

SelectiveAccessModule, this module makes the bot load

all pages in ways that are expected from a normal user,

such as loading ad images and page icons. Those types

of files may be ignored by less advanced

configurations, since they aren't part of any of the ad

network's domain's pages, or part of the click process.

Notice that many of the modules were done with knowledge

that an attacker might take a long period of time to discover if

specifically targeting the system, such as figuring out if the

system is blocking off their clicks because the time between

each access is too short.

VI. TESTS AND RESULTS

O test the defense system, the developed bot was put

against it, with different combinations of modules

enabled, and finally with all modules active at once.

Ultimately the system could identify all the attack attempts as

frauds, but a low-frequency attack attempt would have been

able to go undetected, as the system's rules don't individually

address infrequent but continuous fraud attempts (more on that

in the final section, VII).

Tests were run on a Windows 10 operational system. The

servers that represent the three online advertisement agents

(publisher, ad network and advertiser) and the bot all ran in a

local network, using different ports each to simulate the

different site domains that would be required for the testing.

The three agent's servers work in a normal way, being able to

respond to any HTTP Request of the GET type that they

receive, displaying their respective pages.

The bot's attacks are called 6 times, each time with a

different set of modules, which will from now on be referred

to as "configurations". These configurations are defined by

simple text files with values 1 ("on") or 0 ("off") for all

possible modules; this is done to represent the degree of

complexity of the simulated attacks. Table II shows how the

configurations are all set, with the value "1" meaning that the

module is activated, while "0" meaning the opposite, and the

roman numerals representing each configuration.

T

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 35

TABLE II

MODULES PRESENT IN EACH CONFIGURATION

For the bot itself, three parallel threads are used for every

attack attempt. Given that each access is registered as a new

click, this would lead to better and quicker results for the

attacker, as explained before in Subsection V.B.

Table III shows the chosen weight values for all the

indicative rules. Those values aren't definitive or optimal, but

were picked in a way that establishes the relative importance

of each indicative rule if compared with the others.

TABLE III

WEIGHTS USED FOR EACH RULE DURING TESTING

The first part of the test was to see if the system would

incorrectly label a real user as a fraud, and for that the click

process was done twice through the Firefox 59.0.1 (64-bit)

browser. Figure 7 shows the traffic captured between the

servers during the 2 accesses. For this and the next images

showing the traffic captures, the following color code is used:

● Purple captures are from the publisher's site.

● Blue captures show the ad network.

● The darker blue tones show the 2 accesses that

configure a click, namely for the pages adRequest.html

and redirect.html.

● Finally, the advertiser's domain is represented by

orange.

Table IV shows the details of some of the packets sent to

the ad network's server during the click process, and Table V

shows results for every rule test the click went through. A

value of 't' means it passed the test, while 'f' means failure. The

click will be considered a fraud if it either fails a decisive rule

or gets a score below 0.5. As they show, the real user passed

through all online tests without issues.

On the first attack, seen in Figure 8, note that bots are

identified as frauds as soon as they access the first page on the

network's domain. Given that in this configuration the bot

does not use expected HTTP headers, the bots fail on the

AcceptLangRule, as Tables VI and VII show. With this

attack's report and the following ones, only one of the clicks'

status is shown in the table unless stated otherwise, as the 3

parallel clicks will, for the most part, have the same exact

results.

Fig. 7. HTTP Traffic from 2 ad clicks via browser.

TABLE IV

REQUESTS FROM THE BROWSER

TABLE V
SYSTEM RESULTS FOR A REAL USER

Fig. 8. HTTP Traffic from the first bot configuration.

36 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

TABLE VI
REQUESTS FROM THE FIRST CONFIGURATION

TABLE VII
REQUESTS FROM THE FIRST CONFIGURATION

With the bot's second configuration, attack attempts in

Figure 9 were once again identified by the system. In this case,

the first bot managed to pass through the first page's tests, but

failed for rules JavascriptRule and RedirectTime right after.

The other 2 bots were identified in the first page thanks to the

HumanTimerRule, as they accessed the ad link way too

quickly for it to be done by a legitimate, human user. The

reports are present at Tables VIII and IX. Note that in this case

the report on all 3 accesses is shown.

Fig. 9. HTTP Traffic from the second bot configuration.

TABLE VIII
REQUESTS FROM THE SECOND CONFIGURATION

TABLE IX
REQUESTS FROM THE SECOND CONFIGURATION

In the following test, the bot used the following modules:

NormalAccess, HumanTimer, Headers, DNT and WideAccess.

Figure 10 shows the traffic, and from that it can be noted the

difference that the WideAccessModule introduces: the bot now

sends requests for the images in the network's pages, including

the ones that a normal user wouldn't (hidden.png). However,

the bot does not pass the tests, as in Tables X and XI. It fails to

pass rules JavascriptEnabled and RedirectTime, which puts

the score just under 0.5.

Fig. 10. HTTP Traffic from the third bot configuration.

TABLE X

REQUESTS FROM THE THIRD CONFIGURATION

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 37

TABLE XI
REQUESTS FROM THE THIRD CONFIGURATION

Verifying the results from Table XIII it is noticed that the

scores and overall report from the system are very similar,

contrasting with the traffic differences seen in Figure 11 and

Table XII, which derive from the SelectiveAccessModule. This

happens because, even with the new module to improve

navigation, the attack still doesn't take any measures against

the JavascriptEnabled and RedirectTime rules.

Fig. 11. HTTP Traffic from the fourth bot configuration.

TABLE XII

REQUESTS FROM THE FOURTH CONFIGURATION

TABLE XIII
REQUESTS FROM THE FOURTH CONFIGURATION

From the fifth configuration onwards, the online

analysis alone could not identify the fraud, which can be

visualized in the report from Table XV. In the report, row '15'

shows the results before the offline analysis acted, and the

'15*' row is for the results after. In this configuration, the

attacker uses a CookieModule and reads through the javascript

code to bypass the JavascriptEnabledRule. However, it still

fails the RedirectTime rule, and is reported as fraud by both

the PagesLoaded and TimePeriod offline rules.

Fig. 12. HTTP Traffic from the fifth bot configuration.

TABLE XIV

REQUESTS FROM THE FIFTH CONFIGURATION

TABLE XV
REQUESTS FROM THE FIFTH CONFIGURATION;

BEFORE AND AFTER OFFLINE ANALYSIS

For the final test, the bot has all modules activated, and its

traffic capture is in Figure 13. As is reported inTables XVI

and XVII, the bot passes through the PagesLoadedRule now,

but is still detected by both TimePeriod and RedirectTime

rules, giving the clicks a fraud status.

Fig. 13. HTTP Traffic from the sixth bot configuration.

38 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

TABLE XVI

REQUESTS FROM THE SECOND CONFIGURATION

TABLE XVII

REQUESTS FROM THE SIXTH CONFIGURATION

Finally, after running all the tests it is clear that the system

managed to correctly detect every fraud attempt from the

attack simulation. Although the attacks managed to bypass

more rules each time, the high weights of the RedirectTime

and TimePeriod rules were key in identifying the frauds

correctly. This also goes to show the importance of weights:

if, for example, RedirectTime had a weight of 2 instead of 3,

and TimePeriod had a weight of 1 instead of 2, the sixth and

last attack configuration would have had a score higher than

0.5, and thus wouldn't have been identified as fraud.

VII. CONCLUSION

ESULTS obtained match the expectations. Although not

yet tested in a real environment, the system has shown

good performance against different types of attack, with at

least two of the rules identifying each of those attempted

frauds. All the attacks attempted by the bot user were

identified, but it is emphasized the importance of selecting

appropriate values for rules' weights, as different values for

key rules would have led to the system not correctly

classifying attacks as such. The chosen weights for our tests

aren't the only possible values and in a real world scenario

through experimentation would be necessary.

Low-frequency attacks are still a threat as malicious clicks

spread over long time intervals will most likely not be

automatically detected, and if done in a large scale with

multiple IP addresses could affect the agents protected by the

system. There are however issues with those methods of attack

themselves, namely obtaining access to this significant

number of IPs and obtaining economical return from simpler

attempts of the attack, given the low return for a single click.

Even with the successful elaboration of the system

proposed, click fraud still poses challenges for defense

systems. For instance, lack of public data sets about click-

related subjects, in particular samples of previously identified

click frauds, and, in the case of defense systems for ad

networks in particular, having no reliable access to user

behavior parameters such as mouse movements or time spent

on different pages within a domain, essential data for detecting

abnormalities with site accesses, given how such things carry

inherently human characteristics to them and would be very

challenging to replicate with a fake user.

Although this work focused on click fraud detection, the

approach adopted is not entirely dependent on the attack

specifics and might be extended to click bot detection in

general with a subset of the rules used.

A. Future Work

This is ongoing work and there are several possibilities for

improvement. Some of them are presented below.

1) LoadingBehaviorRule

One type of rule that could still be added is a verification of

user behavior during the loading period that's spent in the two

domain pages, before the user is redirect to the advertiser, and

would consist of verifying for activities such as mouse events

and mouse movements. This rule would have a negative

weight, as described on Section IV, given that a normal user

might fail the test simply by not interacting with the computer

during the brief loading period, but passing the rule does

indicate that the user is likely legitimate.

To store the relevant information about the users' accesses, a

simpler version of the report described for the rule

ExternalBehaviorRule might be used, as seen on Table XVIII.

TABLE XVIII

REPORT TO BE USED FOR LOADINGBEHAVIORRULE

2) Browser Functionality Detection

Another feature that could enhance detection is to look for

browser functionalities on users. Bots generally aren't

implemented with browsers. To reminisce, one of the most

common click fraud methods involves infecting computers of

internet users, and sending instructions to the infected

machines so they can operate on the background without

knowledge of the computer's owner. This is ideally

implemented with light-weight and quick programs, so the

person using the computer doesn't notice it.

Based on that and the report from Xu et al. [2], the idea is to

make use of a list of functionalities considered universal in

various different recent browsers, covering 5 common

browsers (namely, Chrome, Firefox, Internet Explorer, Safari,

Opera).

3) Browser Fingerprinting

This is similar to the technique shown in the previous

subsection, in that it revolves around sending requests to a

R

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018 39

user and asking for them, or more specifically their browser,

to complete certain tasks, such as rendering a three-

dimensional object. The answer can provide information that

differs between unique users and browsers, and thus is useful

for authentication and identifying malicious users.

Relatedly, there is also system fingerprinting. With a similar

focus, this field tries to identify distinct users based on their

operational system and its characteristics. Adding such

techniques would be a viable way of identifying even complex

frauds that are being carried out by a single machine, or many

distinct machines being used repeatedly, for example.

4) Machine Learning

The system was already made with possible machine

learning implementations in mind for the future. Many aspects

can be optimized and automatized, such as individual rule

weights and rule configurations, which could be tested against

datasets of already identified traffic, including frauds, and

even lead to discovering configurations that work better in

specific situations over others. Even more advanced

algorithms could experiment with identifying patterns in the

datasets themselves and propose new rules to be used.

5) Real-World Scenarios

Finally, modifying the system for real-world scenarios

should be considered, as the code developed, although made

with scalability in mind, was not tested against massive

request quantities. This could present performance and

maintainability issues.

Along with this, there may be other problems that were not

properly addressed throughout the development of the system,

and future, more advanced attacks that the system would not

be prepared to defend automatically against might be created

and utilized.

REFERENCES

[1] C. McNair, “US ad spending: eMarketer’s updated estimates and

forecast for 2017,” Sep. 2017.
[2] H. Xu, D. Liu, A. Koehl, H. Wang, and A. Stavrou, “Click fraud

detection on the advertiser side,” in European Symposium on Research

in Computer Security. 1em plus 0.5em minus 0.4em Springer, 2014, pp.
419–438. doi: 10.1007/978-3-319-11212-1_24

[3] N. Daswani, C. Mysen, V. Rao, S. Weis, K. Gharachorloo, and S.

Ghosemajumder, “Online advertising fraud,” Crimeware:
understanding new attacks and defenses, vol. 40, no. 2, pp. 1–28, 2008.

[4] R. J. Oentaryo, E.-P. Lim, M. Finegold, D. Lo, F. Zhu, C. Phua, E.-Y.

Cheu, G.-E. Yap, K. Sim, M. N. Nguyen et al., “Detecting click fraud
in online advertising: a data mining approach.” Journal of Machine

Learning Research, vol. 15, no. 1, pp. 99–140, 2014

[5] R. Fielding and J. Reschke, “Hypertext transfer protocol (http/1.1):
Semantics and content,” Internet Requests for Comments, RFC Editor,

RFC 7231, June 2014, http://www.rfc-editor.org/rfc/rfc7231.txt.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc7231.txt
[6] R. Fielding and J. Reschke, “Hypertext transfer protocol (http/1.1):

Authentication,” Internet Requests for Comments, RFC Editor, RFC

7235, June 2014, http://www.rfc-editor.org/rfc/rfc7235.txt . [Online].
Available: http://www.rfc-editor.org/rfc/rfc7235.txt

[7] B. Kitts, J. Y. Zhang, G. Wu, W. Brandi, J. Beasley, K. Morrill, J.

Ettedgui, S. Siddhartha, H. Yuan, F. Gao et al., “Click fraud detection:
adversarial pattern recognition over 5 years at microsoft,” in Real

World Data Mining Applications. 1em plus 0.5em minus 0.4em
Springer, 2015, pp. 181–201. doi: 10.1007/978-3-319-07812-0_10

[8] N. Daswani and M. Stoppelman, “The anatomy of clickbot. a,” in

Proceedings of the first conference on First Workshop on Hot Topics in
Understanding Botnets. 1em plus 0.5em minus 0.4em USENIX

Association, 2007, pp. 11–11.

[9] J. Leyden, “Botnet implicated in click fraud scam,” May 2006.
[Online]. Available:

https://www.theregister.co.uk/2006/05/15/google_adword_scam

[10] United States District Court, “Microsoft vs Eric Lam et. al.” 2009.
[11] P. Pearce, C. Grier, V. Paxson, V. Dave, D. McCoy, G. M. Voelker,

and S. Savage, “The zeroaccess auto-clicking and search-hijacking

click fraud modules,” California Univ Berkeley Dept of Electrical
Engineering and Computer Sciences, Tech. Rep., 2013.

[12] C. P. Avila and M. Vijaya, “Click through rate prediction for display

advertisement,” International Journal of Computer Applications, vol.
136, no. 1, 2016.

[13] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L.

Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click prediction: a
view from the trenches,” in Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining.

1em plus 0.5em minus 0.4em ACM, 2013, pp. 1222–1230. doi:
10.1145/2487575.2488200

[14] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human

visual system,” nature, vol. 381, no. 6582, p. 520, 1996. doi:
10.1038/381520a0

[15] Census at School Canada, “Average reaction time”,

http://censusatschool.ca/data-results/2016-2017/average-reaction-time/
, 2017.

[16] Human Benchmark, “Reaction time statistics,”
https://www.humanbenchmark.com/tests/reactiontime/statistics , 2018.

[17] J. Priebe, “A study of internet users’ cookie and javascript settings,”

Apr. 2009. [Online]. Available:
http://www.smorgasbork.com/2009/04/29/a-study-of-internet-users-

cookie-and-javascript-settings/

[18] A. Winnicki, “Just how many web users really disable cookies or
javascript?” Apr. 2016. [Online]. Available:

https://blog.yell.com/2016/04/just-many-web-users-disable-cookies-

javascript/
[19] P. O’Sullivan, E. H. Stern, R. C. Weir, and B. E. Willner, “Pixel cluster

transit monitoring for detecting click fraud,” Feb. 2016, US Patent

9,251,522.

[20] B. E. Willner, E. H. Stern, P. J. O’Sullivan, R. C. Weir, and S.

Callanan, “Cursor path vector analysis for detecting click fraud,” Jan.

2015, US Patent 8,938,395.
[21] A. Abraham, “Rule-based expert systems,” Handbook of measuring

system design, 2005. doi: 10.1002/0471497398.mm422

[22] K. Dave and V. Varma, “Predicting the click-through rate for rare/new
ads,” Center for Search and Information Extraction Lab International

Institute of Information Technology Hyderabad, INDIA, 2010. doi:

10.1145/1835449.1835671
[23] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson, “What’s

clicking what? Techniques and innovations of today’s clickbots,” in

International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2011, pp. 164–183. doi: 978-3-642-

22424-9_10

[24] J. Parsons, “The difference between website impressions and clicks,”
Jan. 2015. [Online]. Available:

https://growtraffic.com/blog/2015/01/difference-website-impressions-

clicks

[25] A. Juels, S. Stamm, and M. Jakobsson, “Combating click fraud via

premium clicks.” in USENIX Security Symposium, 2007, pp. 17–26.

[26] S. Clifford, “Microsoft sues three in click-fraud scheme,” Jun. 2009.
[Online]. Available:

http://www.nytimes.com/2009/06/16/business/media/16adco.html

Paulo S. Almeida is from Brasília,

Brazil. There, he obtained a bachelor’s

degree in computer engineering at UnB

(University of Brasília) in 2017.

He worked as an intern for Autotrac

Comércio Telecomunicações S/A for

http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7235.txt
https://www.theregister.co.uk/2006/05/15/google_adword_scam
http://www.smorgasbork.com/2009/04/29/a-study-of-internet-users-cookie-and-javascript-settings/
http://www.smorgasbork.com/2009/04/29/a-study-of-internet-users-cookie-and-javascript-settings/
https://blog.yell.com/2016/04/just-many-web-users-disable-cookies-javascript/
https://blog.yell.com/2016/04/just-many-web-users-disable-cookies-javascript/
https://growtraffic.com/blog/2015/01/difference-website-impressions-clicks
https://growtraffic.com/blog/2015/01/difference-website-impressions-clicks
http://www.nytimes.com/2009/06/16/business/media/16adco.html

40 ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 5, NO. 1, 2018

one and a half years. He is currently working as a Researcher

for Laboratory LATITUDE in University of Brasília. Mr.

Almeida is interested in research on the areas of security and

networks.

João J. C. Gondim is from Recife,

Brazil, where he obtained a degree in

electrical engineering (electronics) at

UFPE (Pernambuco Federal University)

in 1984.

He was also awarded an MSc in

Computing Science at Imperial College,

University of London, in 1987 and a PhD

in Electrical Engineering at UnB (University of Brasília,

2017). Since 1994, Professor Gondim is a lecturer at

Department of Computing Science (CIC) at UnB where he is a

tenured member of faculty. His research interests are

information and cyber security. João is married and has one

daughter and two sons. He likes hiking and off roading on a

1966 willys jeep; cooking and wines; assembling robots and

watching the stars with his kids.

