
ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 4, NO. 1, 2017 12

Cryptanalysis of Kowada-Machado
key exchange protocol

M. Coutinho, T. C. de Souza Neto, R. de O. Albuquerque and R. T. de Sousa Júnior

Abstract—A non-interactive key exchange (NIKE) protocol
allows N parties who know each other’s public key to agree
on a symmetric shared key without requiring any interaction. A
classic example of such protocol for N = 2 is the Diffie-Hellman
key exchange. Recently, some techniques were proposed to obtain
a NIKE protocol for N parties, however, it is still considered
an open problem since the security of these protocols must be
confirmed. In a recent work, Kowada and Machado [1] proposed
a protocol that solves the NIKE problem for N parties. However,
this work found security problems in the proposed solution and
implemented an efficient attack to their protocol demonstrating
that their key-exchange scheme is insecure.

Keywords—Key exchange, Cryptography, Cryptanalysis.

I. INTRODUCTION

Key exchange schemes are very important in cryptography.
A non-interactive key exchange (NIKE) protocol is designed to
allow N parties to agree on a shared secret without requiring
any interaction. Usually, N parties publish their public keys
and then agree on a shared key k that is secret from any
eavesdropper who only sees the public keys.

In 1976, Diffie and Hellman [2] revolutionized the field with
a non-interactive key exchange protocol (NIKE) for 2 parties
(N = 2). Since then, several other schemes were proposed for
N = 2 using different techniques such as Elliptic Curves [3]
and El-Gamal [4]. In 2004, Joux [5] was the first author who
solved the problem for N = 3 using bilinear maps.

The development of NIKE protocols for an arbitrary number
of parties N has been a research topic for several years in the
cryptographic field and some of the greatest researches of the
area have tried to solve this problem.

In 2013, Coron et. al. [6], introduced the first implementa-
tion of a key exchange for N parties using multi-linear maps
and lattices, which requires an initial setup between all parties.
In 2017, Boneh et. al. [7] used indistinguishability obfuscation
to propose the first technique that seems to solve the NIKE
problem for N parties.

In this context, Kowada and Machado [1] proposed a new
protocol to solve the NIKE problem for N parties. Unfortu-
nately, as this paper will show, their scheme is insecure as

M. Coutinho, Cybersecurity INCT Unit 6, Decision Technologies Labo-
ratory - LATITUDE, Electrical Engineering Department (ENE), Technology
College, University of Brasília (UnB), coutinho.stat@gmail.com

T. C. de Souza Neto, Cybersecurity INCT Unit 6, Decision Technologies
Laboratory - LATITUDE, Electrical Engineering Department (ENE), Tech-
nology College, University of Brasília (UnB), tsouzaneto@gmail.com

R. de O. Albuquerque, Cybersecurity INCT Unit 6, Decision Technologies
Laboratory - LATITUDE, Electrical Engineering Department (ENE), Tech-
nology College, University of Brasília (UnB), robson@redes.unb.br

R. T. de Sousa Júnior, Cybersecurity INCT Unit 6, Decision Technologies
Laboratory - LATITUDE, Electrical Engineering Department (ENE), Tech-
nology College, University of Brasília (UnB), desousa@unb.br

there is a very efficient attack to compute the shared secret
based exclusively on the public keys.

This paper is organized as follows: in section II, presents
the Kowada-Machado (KM) protocol. In section III, some
number theory results used in the construction of the attack,
are presented. In section IV the proposed attack is described,
an actual implementation is presented and practical results are
given. Finally, in section V the conclusions are presented.

II. KOWADA-MACHADO KEY EXCHANGE

Kowada and Machado [1] proposed a NIKE protocol in-
volving N parties. The idea is similar to the Diffie-Hellman
protocol [2]. Namely, it uses the exponentiation in a finite field
and relies on the difficulty of the discrete logarithm problem.
The difference is that the exponent is a quadratic function
inspired on diophantine equations [8].

Basically, the public parameters α, β ∈ N define the
quadratic equation for all parties, δ ∈ N is a dimension
parameter and y ∈ N is a base. All these parameters are
generated by one of the N parties or by a trusted third party.
Considering ϕ(x) as Euler’s phi function and (x, y) as the
greatest common divisor (GCD) of x and y, the Kowada-
Machado protocol is described in Algorithm 1.

Algorithm 1 Key establishment
• Public parameters definition

1) Choose δ ∈ N
2) Choose β ∈ N such that ϕ(δ) - β
3) Choose α ∈ N such that ϕ(δ) | α
4) Choose y ∈ N such that y < δ and (y, δ) = 1
5) Publish δ, y, α, β

• Key generation for each party
1) Each party i chooses a pair (xai , xbi), such that

(xbi , α) = 1. This defines the private key.
2) Each party calculates γi = αx2ai + βxbi .
3) Each party publishes its public key γi.

• Computing a shared secret
1) Each party i computes a shared secret using his

private key xbi and multiplying by the public keys
of all other parties:

k = yβ
N−1 ∏N

t=1 xbi mod δ

All parties can calculate the same secret using the fact that
yαx ≡ 1 mod δ since ϕ(δ) | α. In their paper [1], the authors
also define two ways of generating the public parameters.

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 4, NO. 1, 2017 13

However, we will not address that here since it does not affect
the proposed attack.

III. MODULAR EQUATIONS

In this section, we present some number theory results that
we will use as a basis of the attack. The interested reader can
find more details on [9] or [10].

Consider the linear equation

ax ≡ b mod m (1)

Let d = (a,m). It is known that if d|b, then this equation
has d incongruent solutions modulo m. Additionally, given a
solution to Eq. (1), it is possible to compute the remaining
d− 1 solutions from the first. Indeed, we have the following:

Lemma 3.1: Let x0 be a solution to Eq. (1). Then

x0 +
m

d
i

is also a solution of Eq. (1) for all i = 0, ..., d− 1.
Proof: By definition, we have ax0 ≡ b mod m. Then,

for each i ∈ {0, . . . , d− 1}, we have

a
(
x0 +

m

d
i
)
≡ ax0 + a

m

d
i mod m

Since d|a, it follows that amd i is a multiple of m and therefore

a
(
x0 +

m

d
i
)
≡ ax0 ≡ b mod m

Under the hypothesis of Lemma (3.1), it is said that x0 is
a fundamental solution of Eq. (1). Next, we will show how to
find a fundamental solution to Eq. (1). To do so, consider the
following lemmas:

Lemma 3.2: Let x0 be a solution of the equation
a

d
x ≡ b

d
mod

m

d
Thus, x0 is a solution of Eq. (1).

Proof: By definition, there is a integer k such that
a

d
x0 =

b

d
+ k

m

d
Thus, ax0 = b+ km and therefore x0 is a solution of ax ≡ b
mod m.

Lemma 3.3:

x0 =
(a
d

)−1 b

d
mod

m

d
is a solution of the equation

a

d
x ≡ b

d
mod

m

d

Proof: Since d = (m, a), it follows that
(
m
d ,

a
d

)
= 1.

Consequently, a
d has a inverse modulo m

d . A straightforward
calculation concludes the proof.

We still need another important result that defines a way to
work with exponents of modular equations.

Lemma 3.4: If a ≡ b mod ϕ(m), then

xa ≡ xb mod m

Proof: We can write a = kϕ(m)+ b, for some integer k.
Hence, from Euler’s Theorem,

xa = xkϕ(m)+b = xkϕ(m)xb ≡ xb mod m.

IV. ATTACK

This section will define the proposed attack. Additionally,
practical results are presented.

A. Theoretical framework

Consider the key establishment between N parties by Al-
gorithm 1. In this case, define the private keys (xa1 , xb1),
(xa2 , xb2), ..., (xaN , xbN) and the public keys γ1, γ2, ..., γN .

Note that the attacker has access to the public keys γi for
i = 1, ..., N and can compute

σi = γi mod ϕ(δ) ≡ βxbi mod ϕ(δ) (2)

From now on, we will consider that d = (β, ϕ(δ)).
Lemma 4.1: The solution to the system

σ1 ≡ βxb1 mod ϕ(δ)
σ2 ≡ βxb2 mod ϕ(δ)

...
σN ≡ βxbN mod ϕ(δ)

(3)

has the form(
x01 +

ϕ(δ)

d
j1, x02 +

ϕ(δ)

d
j2, . . . , x0N +

ϕ(δ)

d
jN

)
,

where ji = 0, 1, . . . , d− 1 for all i ∈ {1, . . . , N} and x0i is a
fundamental solution of σi ≡ βxbi mod ϕ(δ).

Proof: It follows directly from Lemma 3.1.
Lemma 4.2: The exponent

βN−1
N∏
i=1

xbi mod ϕ(δ)

is invariant under the choice of the fundamental solution.
Proof: Let x0i +

ϕ(δ)
d ji be any solution of σi ≡ βxbi

mod ϕ(δ). Then

βN−1
N∏
i=1

xbi = βN−1
N∏
i=1

(
x0i +

ϕ(δ)

d
ji

)
That is,

βN−1
N∏
i=1

xbi = βN−1x01x02 . . . x0N

+βN−1ϕ(δ)

d
(j1x02 . . . x0N

+x01j2 . . . x0N + · · ·+ x01 . . . x0N−1
jN)

+ . . .

+βN−1

(
ϕ(δ)

d

)N−1

(x01j2 . . . jN

+j1x02 . . . jN + · · ·+ j1 . . . jN−1x0N)

+βN−1

(
ϕ(δ)

d

)N
j1j2 . . . jN

(4)

Note that since d | β and d | ϕ(δ) then all terms, except the
first, are multiples of ϕ(δ). Therefore, it follows that

βN−1
N∏
i=1

xbi ≡ βN−1x01x02 . . . x0N mod ϕ(δ) (5)

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 4, NO. 1, 2017 14

This result is the cryptanalysis of KM key exchange protocol
since the attacker can calculate the shared secret from the
public parameters and keys in a very efficient way. In the next
section we will define specifically the attack as an algorithm
and will show an actual implementation and its performance.

B. Algorithm

Algorithm 2 details the proposed algorithm for the crypt-
analysis of the KM protocol. The attack is based on the results
of Lemmas 4.1 and 4.2. The algorithm is extremely efficient
since it only uses basic modular operations, the Euclidean
algorithm to compute d, and the Extended Euclidean algorithm
to compute I .

Algorithm 2 Cryptanalysis of KM protocol
• Definitions

1) The attacker has access to δ, α, β, since they are all
public parameters

2) The attacker has access to the public key of each
one of the N parties γ1, . . . , γN

• Finding the fundamental solutions
1) Compute σi = γi mod ϕ(δ) for i = 1, ..., N

obtaining the system

σ1 ≡ βxb1 mod ϕ(δ)
σ2 ≡ βxb2 mod ϕ(δ)

...
σN ≡ βxbN mod ϕ(δ)

2) Compute d = (β, ϕ(δ))

3) Compute I =

(
β

d

)−1

mod
ϕ(δ)

d
4) Compute the fundamental solutions from

x01 = I
σ1
d

mod
ϕ(δ)

d

x02 = I
σ2
d

mod
ϕ(δ)

d
...

x0N = I
σN
d

mod
ϕ(δ)

d

• Compute the shared secret
1) The attacker computes

S = βN−1x01x02 . . . x0N mod ϕ(δ)

2) Calculate the shared secret

k = yS mod δ

The attack was implemented using the RELIC tool-kit
[11], a cryptographic library with emphasis on efficiency and
flexibility. The source code is given in Appendix A.

C. Practical example

To illustrate the attack we will use the example provided in
the original work [1]. Let δ = 33, α = 20, β = 455, y = 10

Key size in bits
1024 2048 4096

N

2 0.0044 0.0215 0.1313
3 0.0054 0.0215 0.1469
5 0.0053 0.0220 0.1360
10 0.0053 0.0231 0.1569

TABLE I
TIME IN SECONDS TO EXECUTE THE ATTACK FOR KEY SIZES OF 1024,

2048 AND 4096 BITS FOR DIFFERENT NUMBER OF PARTIES.

and ϕ(δ) = 20. Suppose there are two parties with public
keys γ1 = 20755 and γ2 = 12885. In their work, the authors
compute the shared secret as k = 10. Now, we will show how
the attacker can compute this shared secret using Algorithm
2.

1) The attacker computes

σ1 = 15 ≡ 20755 mod 20
σ2 = 5 ≡ 12885 mod 20

2) The attacker computes d = (455, 20) = 5
3) The attacker computes I = 3 ≡ 91−1 mod 4
4) The attacker computes the fundamental solutions

x01 = 1 ≡ 3 ∗ 15
5 mod 4

x02 = 3 ≡ 3 ∗ 5
5 mod 4

5) Calculate S = 5 ≡ 455 ∗ 3 ∗ 1 mod 20
6) Finally, the attacker obtain k = 10 ≡ 105 mod 33

As expected, the attacker found the shared secret key k =
10.

D. Computational complexity

The proposed attack was tested in a single machine against
big keys. It was verified that the attack is extremely fast, the
results are presented in Table I. The key sizes of 1024, 2048
and 4096 were used because these are common values for
the DH protocol being infeasible to calculate the discrete log
problem as an attack as discussed in [1].

Note that the attack is extremely fast, demanding less than
1 second even for keys of 4096 bits. In fact, the algorithm
only uses the Euclidean algorithm, which is known to have
polynomial complexity [12]. In Figure 1 is possible to note
that the proposed algorithm has polynomial complexity in the
number of bits of the key.

V. CONCLUSION

In this work we presented the cryptanalysis of the Kowada-
Machado key exchange protocol. Although the KM scheme
solves the non-interactive key exchange problem for N parties,
it does so in an insecure way.

Using the proposed attack and its implementation it is
possible to recover the shared secret based only on the public
keys in a very efficient way. Effectively, the attack can recover
the shared secret in a few seconds even for keys of a very large
size.

ENIGMA - JOURNAL OF INFORMATION SECURITY AND CRYPTOGRAPHY, VOL. 4, NO. 1, 2017 15

Figure 1. The complexity of the attack. In black, the execution times obtained
for different key sizes. In red, polynomial y = 1.610−12x3+3.610−10x2+
4.210−6x − 7.9 ∗ 10−4, showing that the complexity is polynomial in the
number of bits.

REFERENCES

[1] L. A. B. Kowada and R. C. S. Machado, “Esquema de acordo de chaves
de conferência baseado em um problema de funções quadráticas de duas
variáveis,” XVII Simpósio Brasileiro de Segurança da Informação e de
Sistemas Computacionais - SBSeg, 2017.

[2] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[3] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An efficient
protocol for authenticated key agreement,” Designs, Codes and Cryp-
tography, vol. 28, no. 2, pp. 119–134, 2003.

[4] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[5] A. Joux, “A one round protocol for tripartite diffie–hellman,” in Inter-
national algorithmic number theory symposium, pp. 385–393, Springer,
2000.

[6] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Practical multilinear maps
over the integers,” in Advances in Cryptology–CRYPTO 2013, pp. 476–
493, Springer, 2013.

[7] D. Boneh and M. Zhandry, “Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation,” Algorithmica,
vol. 79, no. 4, pp. 1233–1285, 2017.

[8] L. J. Mordell, Diophantine equations, vol. 30. Academic Press, 1969.
[9] S. Shokranian, M. Soares, and H. Godinho, Number Theory. UnB, 1994.

[10] K. Ireland and M. Rosen, A classical introduction to modern number
theory, vol. 84. Springer Science & Business Media, 2013.

[11] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary for
Cryptography.” https://github.com/relic-toolkit/relic.

[12] D. E. Knuth, The art of computer programming: sorting and searching,
vol. 3. Pearson Education, 1998.

APPENDIX

void cryptanalysisKowadaMachado(bn_t k,
bn_t *Pub, bn_t beta, bn_t delta,
bn_t phi, bn_t y, int N)

{
bn_t x0, d, I, phiOverD, betaOverD;

bn_t sigma, S;

bn_null(x0);
bn_new(x0);
...
bn_null(S);
bn_new(S);

bn_gcd_basic(d, beta, phi);
bn_div(phiOverD, phi, d);
bn_div(betaOverD, beta, d);

//I = betaOverD^{-1} mod phiOverD
bn_gcd_ext_basic(betaOverD, I, NULL,
betaOverD, phiOverD);
if (bn_sign(I) == BN_NEG) {

bn_add(I, I, phiOverD);
}

//S = beta^{N-1}
bn_mxp_dig(S, beta, N-1, phi);

//For each Public Key, find
//the solution x0 and multiply by S.
for(int i = 0; i < N; i++)
{

bn_mod_basic(sigma, Pub[i], phi);
bn_div(sigma,sigma,d);
bn_mul_basic(x0, I, sigma);
bn_mod_basic(x0, x0, phiOverD);

bn_mul_basic(S, S, x0);
bn_mod_basic(S, S, phi);

}

//k = y^{S} mod delta
bn_mxp_basic(k, y, S, delta);

bn_free(x0);
...
bn_free(S);

}

