
ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 201626

A Secure Protocol for Exchanging Cards in P2P

Trading Card Games Based on Transferable e-cash
M. V. M. Silva and M. A. Simplicio Jr.

Abstract—Trading card games (TCG) distinguish from tra-
ditional card games mainly because the cards are not shared
between players in a match. Instead, users play with the cards
they own (e.g., purchased or traded with other players), which
corresponds to a subset of all cards produced by the game
provider. Even though most computer-based TCGs rely on a
trusted third-party (TTP) for preventing cheating during trades,
allowing them to securely do so without such entity remains
a challenging task. Actually, potential solutions are related to
e-cash protocols, but, unlike the latter, TCGs require users to
play with the cards under their possession, not only to be able
to pass those cards over. In this work, we present the security
requirements of TCGs and how they relate to e-cash. We then
propose a concrete, TTP-free protocol for anonymously trading
cards, using as basis a secure transferable e-cash protocol.

Keywords—Trading Card Games (TCG), secure trading, TTP-
free, transferable e-cash.

I. INTRODUCTION

A
trading card game (TCG) is a type of card game in which,

instead of using a fixed deck, each player creates his/her

own deck from a subset of all cards made available by the

game provider [1]. During a match, players usually do not

share their cards with their opponents; hence, as any different

cards may exist, part of the game is to build decks that support

a target strategy or game style. To build better decks, users

may either trade cards with other users or purchase them

directly from the game provider. To improve their revenue,

in the last years some providers have expanded their markets

beyond the realm of physical cards, including digital versions

of their games. This is the case, for example, of “Magic: the

GatheringTM”, one of the first TCGs ever released1.

To set matches and avoid cheating, digital TCGs typically

use a client-server architecture, where the centralized system

acts as card market and referee for the matches between

players. When considering mobile applications, however, a

peer-to-peer (P2P) architecture may present advantages over

the client-server one [1], [2]. The reason is that a client-server

model obliges players to have a continuous Internet connection

when trading or playing, preventing them to do any of those

actions otherwise. If the game protocols are designed so it does

not depend on a trusted third party (TTP) to prevent cheating,

on the other hand, then a local connection would be enough,

bringing convenience to users.

M. V. M. Silva, Laboratório de Arquitetura de Redes de Computadores,
Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brasil,
mvsilva@larc.usp.br

M. A. Simplicio Jr, Laboratório de Arquitetura de Redes de Computadores,
Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brasil, mju-
nior@larc.usp.br

1http://magic.wizards.com/en/content/magic-duels

Playing traditional card games in a P2P model was firstly

proposed in mental poker [3] and different solutions were

proposed since them (for a survey, see [4]). These works

also served as basis for TTP-free solutions for TCGs, such

as Match+Guardian [2] and SecureTCG [1], which allow the

detection of cheating attempts during a match with two or

more players. Despite those advances concerning in-game

cheating, such protocols still depend on a trusted entity for

each card trading event, leaving the task of reducing this

dependence as a subject for future work.

Trading cards in a TTP-free manner is a problem that

resembles that tackled by transferable e-cash protocols [5], [6],

where the cards replace the digital money. For example, as in

e-cash, a player should be able to anonymously trade cards

with other players without the need of a TTP for mediating

the transactions; however, if he/she sends the same card to

two or more players (i.e., “double-spends” it), this should

be detectable and the transgressor’s anonymity should be re-

voked.Nevertheless, TCGs also have additional requirements,

as there is no concept similar to “playing with owned cards”

in the context of e-cash. To the best of our knowledge, there

is no definition in the literature of the full set of security

requirements that apply to card trading, which hinders further

progress in this area.

Aiming to tackle the above issues, in this work we: (1) de-

fine the requirements for secure card trading; and (2) instanti-

ate a protocol that fulfills those requirements, allowing players

to detect cheating attempts when exchanging cards which each

other even before a match starts. The propose scheme is based

on existing transferable e-cash protocols (namely, [6] and

[7]), with the required adaptations for allowing players to: (1)

purchase cards from the game provider in a privacy-preserving

manner, meaning that a card cannot be linked to any user

unless its owner generates a proof of ownership; (2) use the

cards they own in a match; (3) trade cards with other players;

(4) verify the validity of the card without the intervention of a

TTP, independently of the number of previous owners the card

has ever had; (5) let the game provider know about cheating

events, such as a user playing with a card that has already

been handed over to another user. Since the resulting protocol

is transparent to how the matches themselves are handled,

it can also be integrated with in-game cheating-detection

mechanisms such as the aforementioned Match+Guardian or

SecureTCG, thus allowing the construction of secure P2P-

based TCG environment.

The rest of this document is organized as follows. Sec-

tion II discusses the characteristics of TCGs, describing its

security requirements compared to those of e-cash protocols.



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 2016 27 

Section III presents the notation and the building blocks of

the proposed protocol, as well as the corresponding security

assumptions. Section IV then uses these building blocks to

describe a concrete instantiation of the proposed protocol.

Finally, Section VI presents our final considerations.

II. BACKGROUND

This section presents the basic concepts related to TCGs,

including the game architecture, the representation of the

cards, and the corresponding security requirements and threats.

A. Architecture

Following the notation of [1], [2], the architecture of a P2P

TCG encompasses a game server and the players.

The game server is responsible for any action that requires a

trusted authority or centralized information storage. One of its

primary roles is to serve as a registration center for players:

to enroll in the system, a user must register with a unique

identifier (e.g. e-mail or social security number) and provide

his/her public key; the game server then generates a digital

certificate to assert this information, allowing anyone to verify

who are the system’s authorized users.

The game server also acts as a card market, being re-

sponsible for selling and digitally signing cards, so the buyer

can prove that a card is valid as well as its ownership. As

a result, the server does not need to keep record of the

cards possessed by each player, as ownership varies with time

and, as proposed in this work, trading may occur without

the server’s knowledge. The server is also responsible for

informing players of the cards available in the game, as new

releases usually add several new cards to the game.

Finally, the server is also the entity that plays the role of

game auditor, verifying claims regarding cheating attempts

and eventually punishing those responsible for misbehavior.

For example, in [1], [2], the players may send after-match

information to the server to prove that a user cheated, e.g.,

by modifying the sequence or contents of their deck during a

match. If a player sends to the server the list of cards employed

by an adversary, the server should also be able to verify

the usage of cards that were not under a malicious player’s

possession at the time of the match (e.g., because he/she

traded it earlier). Providing such after-match data is actually

very common, as this information is normally required to rank

players depending on the number of victories in matches.

Any other action that does not require a TTP, such as

playing the game or trading cards, can be performed in

purely P2P fashion and still be protected by cheating-detection

mechanisms. As in-game cheating is quite thoroughly covered

in [1], in this work we focus only on cheating-detection during

card trading.

B. Representation of cards

The minimal representation of a card C in a typical TCG

corresponds to a tuple C = (ID, d, V, owner), where: ID

is the card’s unique identifier; d is the card’s game-specific

information, which defines how it affects the game, which are

the conditions for it to be played, etc.; V is some validation

information, which allows any player to verify that the card

was indeed issued by the game provider; and owner is

the information that allows the card’s current owner to be

identified. Since V and owner are directly related to a players’

ability to detect invalid cards or attempts to play with cards that

are not actually owned by a player, they are described in more

detail later in Section IV, in which a concrete instantiation of

the proposed protocol for this purpose is described.

C. Comparison with e-cash

The security issues that appear when trading cards are

somewhat similar to those faced by transferable e-cash. Indeed,

both systems must provide some sort of balance, so that the

number of elements (coins or cards) of the system should

not grow without the central server’s authorization. Hence,

no user should be able to produce more elements than what

the central server has emitted, which could be done by forging

a new element or duplicating an existing one. Many actions

supported by card trading and transferable e-cash protocols

are also similar: stamping new cards is similar to minting new

coins, while trading cards is equivalent to spending coins.

It is, thus, reasonable to build a secure card trading protocol

from a transferable e-cash scheme. In this case, like coins, the

card’s portion that indicates ownership (owner), grows in size

with each transference [5], or need to be stored somewhere

else to prevent such growth (e.g., in a receipt [8]). To avoid

indefinite growth, players may refresh their cards, which is

equivalent to deposit a coin and get a new, mint version of it.

TTP-free transferability also raises the problem of duplicating

existing elements, an issue that cannot be prevented but can

be detected so that the culprit is identifiable when the coin

is deposited at the central server. More precisely, in case of

double-spending in transferable e-cash schemes, the central

server is able to revoke the anonymity of the user responsible

for misbehavior, and only of that user, independently of how

many owners the coin had before or after it was copied.

In the context of TCGs, however, the double spending

problem is more complicated because players may not only

trade, but also use their cards without transferring its owner-

ship. Therefore, TCGs also need mechanisms for detecting a

scenario in which a user irregularly plays with a card that has

been previously traded. As further discussed in Section IV,

this can be accomplished if the server crosses the information

about refreshed cards with those received from match reports.

Hence, refreshing cards benefits both honest players and the

game server: the former get a shorter copy of the card, which

is less computationally expensive to verify and trade, while the

latter is able to audit trades by using the information stored in

the cards submitted for refreshing. The same mutual benefit

applies to the match reports: honest players who win matches

can raise their ranks by informing their victories to the server;

honest players who lose matches can make sure the opponent

played fairly; and the server can audit if some refreshed or

traded card has been illicitly used in a match. It should, thus,

be quite easy to encourage players to provide such information

often to the server.



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 201628

In summary, five types of cheating can appear when cards

are traded: (1) Double-refresh: refreshing a same card twice,

obtaining several valid instances of the same card but purchas-

ing a single one; (2) Double-trade: sending copies of the same

card to different users; (3) Trade-then-play: playing with a card

that has already been passed to another user; (4) Refresh-then-

trade: refreshing a card C to obtain a mint version of it, C ′,

but then trading copies of C with other users; and (5) Refresh-

then-play: refreshing a card C to obtain a mint version of it,

C ′, but then using C in matches with other players.

D. System requirements

From the previous discussion, we can postulate that the

following security and usability requirements must be met in

by secure P2P-based TCG system.

Verifiable stamping: The card market must stamp cards, so

their validity and ownership can be verified without the need

of contacting the central server.

TTP-free transferability: Players should be able to trade

cards with each other without the intervention of a TTP, and

the new ownership can also be verified without the need of

contacting a trusted server.

Anonymity: Suppose that U0 purchases a given card C,

and then that card is repeatedly traded among a set of users

{U1...n} before the last owner, Un+1, informs the server about

this ownership. In this case, the server only learns the identity

of Un+1, while the C’s previous owners remain anonymous.

In addition, during this process user Ui only learns the identity

of Ui−1 and Ui+1.

Balance: The number of cards in the system cannot grow

unless the central server stamps new cards, with invalid

duplicates being detected and removed.

Cheat detection: Players cannot trade a card more than

once without losing their anonymity toward the server, nor

play with a card after having traded it.

Exculpability: The game server, even if in collusion with

users, cannot falsely prove that an honest user has cheated,

i.e., the cheating-detection mechanism only allows identifying

users who have duplicated a card (either for trading or playing

with it).

III. BUILDING BLOCKS

This section presents the mechanisms necessary for a con-

crete construction of a P2P TCG trading protocol. Specifically,

the proposed scheme is based on the transferable e-cash

scheme described in [6] and revisited in [7], which relies on

asymmetric pairings, witness-indistinguishable non-interactive

proofs, verifiable random functions and structure-preserving

blind signatures.

A. Preliminaries and Notation

Assume three groups G1, G2 and GT of prime order q, and

a map e : G1×G2 → GT having the following properties: (1)

bilinearity: ∀G ∈ G1, H ∈ G2, a, b ∈ Zq : e(Ga, Hb) =
e(G,H)ab; (2) non-degenerative: ∀G �= 1G1

, H �= 1G2
:

e(G,H) �= 1GT
; and (3) e is efficiently computable. The

pairing parameters Λ = (q,G1,G2,GT , G,H, e) are a Type-3

(or asymmetric) pairing if G1 �= G2 and there is no efficiently

computable homomorphism between G1 and G2.

In a finite set S , s
$

← S denotes that s is sampled uniformly

at random from S . If some protocol R is a multi-party

algorithm between parties A and B, then R
(

A(a) ↔ B(b)
)

is

the execution of R with inputs a from A and b from B. We also

consider a cryptographic hash function H : {0, 1}∗ → {0, 1}q

(e.g., SHA-3 [9]). If H has more than one input, we consider

the inputs are concatenated in the order they are presented.

We also define a set of map functions from G1, G2 and Zq

to {0, 1}∗, so that group elements can be used as input to the

hash function.

A co- security assumption is the translation of an assump-

tion from a symmetric pairing to an asymmetric pairing. The

superscript numbers in these assumptions are the necessary

number of duplicated elements from any source group of the

pairing for validation of security, as discussed in details in

[10].

B. Groth-Sahai proofs

Proofs of knowledge allow a party to prove knowledge

of some secret value without revealing it, which is done by

showing a witness satisfying some relation that depends on the

secret. The most efficient proofs are usually interactive, based

on a challenge-response method. For transferable elements,

however, one cannot expect any interaction with the parties

not directly involved in the current transference. Nevertheless,

as shown in [11], non-interactive proofs can still be performed

in an efficient manner when the relation to be proved is a

set of equations in some defined format and the witnesses

are variables that belong to the solutions set. Such Groth-

Sahai proofs depend on a signature scheme, and the relation is

defined by the verification equation. For a structure-preserving

signature, which is adopted in this article, the relation is the

following pairing product equation (PPE):

m
∏

i=0

e(Xi, Bi)

n
∏

j=0

e(Aj , Yj)

m
∏

i=0

n
∏

j=0

e(Xi, Yj)
γij = t (1)

where Aj ∈ G1, Bi ∈ G2, t ∈ GT and γij ∈ Zq are constants,

and Xi ∈ G1 and Yj ∈ G2 are variables. For a proof, we need

4 elements in G1 and 4 in G2 for each equation, whereas each

variable will be committed to 2 elements in their group.

The algorithms employed by a Groth-Sahai proof are:

GSCommit(x, open) → C, that commits the variables to be

used in a proof; GSProve({xi in Ci}i=1..n|eq) → φ, that

creates a proof that the prover knows witnesses that satisfies

the equation; and GSV erify(φ, eq) → {0, 1}, that verifies if

the proof is valid.

We refer to [11] for a concrete instantiation under Symmet-

ric External Diffie-Hellman (SXDH) assumption [12].

C. Verifiable random function

A verifiable random function (VRF) fs is a especial type

of pseudorandom function that allows anyone who knows

the secret seed s to compute fs(x) for any x and also to



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 2016 29 

prove that fs(x) is indeed correct without compromising the

unpredictability of fs at any point x
′

�= x [13]. Of especial

interest to this work is the VRF instantiation described in

[7], in which the verification of x uses the PPE e(Y =

G
1

s+x , Hs ·Hx) = e(G,H), so knowledge of s and x can be

proved by the Groth-Sahai method. This specific instantiation

is secure under the q-Decisional Diffie-Hellman inversion (q-

DDHI) assumption (in G1) [14] and SXDH (for the Groth-

Sahai proof).

D. Structure-preserving blind signature

Blind signatures were originally proposed in the context

of anonymous e-cash [15], allowing a user to obtain a valid

signature on values unknown to the signer. If transferability

is required, the user doing the transfer also needs to prove

knowledge of the signed values, which can be achieved using

structure-preserving (or automorphic) signatures [16]. In such

signature schemes, the verification keys lie in the message

space, the messages and signatures comprise elements of G1

and G2, and the verification is done using a set of PPEs. Using

the set of signatures, a prover can create a non-interactive

proof of knowledge that some witnesses satisfy the PPE for

verification.

There are few structure-preserving blind signature schemes

in the literature, and even fewer for efficiently signing a

set of messages. For the purposes of this work, we adapt

the P-signature scheme proposed by [17], converting it to

an asymmetric pairing setting by means of the method pro-

posed in [10]. The reason for this modification is that, even

though [17] is quite efficient, it uses symmetric pairing and

supersingular elliptic curves, requiring fields of larger size to

achieve a security level similar to what can be obtained with

an asymmetric pairing [18]. The resulting scheme comprises

the following operations:

• PSetup(k) → pparams: Generates the set of public

parameters pparams for the signature, which corresponds to

the parameters of Groth-Sahai proofs under an asymmetric

pairing setting. For the sake of simplicity, these parameters

are omitted in the descriptions of the remainder operations.

• PKeyGen(n) → (pk, sk): Choose α, β, γ, ω
$
← Z

∗
q and

U,U0

$
← G2. Compute U1 = Gβ ,Ω = Gω, A = Hγ , as well

as ∀i ∈ [1, 2n] \ (n + 1) : Gi = Gαi

, Hi = Hαi

, to sign

n messages. Output the private key sk = (γ, ω, β) and the

public key pk = (U,U0, U1,Ω, A, {Gi}i=1..n, {Hi}i=1..n).

• PSign(sk, �m) → σ: For �m = (m1, ...,mn), pick r
$
←

Z
∗
q and compute K = Hr ·

∏n
j=1 H

mj

n+1−j . Choose c
$
← Z

∗
q

and compute: σ1 = Hγ/(ω+c), σ2 = Gc, σ3 = U c, σ4 =
(U0 ·K

β)c, σ5 = Kc, σ6 = K, σr = r.

Output the signature σ = (σ1, σ2, σ3, σ4, σ5, σ6, σr).

• PV erifySig(pk, σ, �m) → {0, 1}: Return 1 if and only

if the following equations hold: e(G,A) = e(Ω · σ2, σ1),
e(σ2, U) = e(G, σ3), e(G, σ4) = e(σ2, U0) · e(U1, σ5),
e(G, σ5) = e(σ2, σ6), and σ6 = Hr ·

∏n
j=1 H

mj

n+1−j .

• PCommit(pk, �m) → (K, r): Choose r
$
← Z

∗
q and

compute K = Hr ·
∏n

j=1 H
mj

n+1−j . Output the commitment

comm = (K, r).

• PUpdateComm(pk, �m,K) → K ′: Compute and output

K ′ = K ·
∏n

j=0 H
mj

n+1−j .

• PWitGen(pk, i, �m,K, r) → Wi: If K is a commitment

to �m with opening r, compute and output Wi = Gr
i ·

∏n
j=1;j �=i G

mj

n+1+i−j .

• PV erifyWit(pk, i,mi,Wi,K) → {0, 1}: Return 1
if and only if the following equation holds: e(Gi,K) =
e(G1, Hn)

mi · e(Wi, H).

• PProveCom(pk, �m,K, r) → φK : Generate witnesses

for each message committed, ∀i ∈ [1, n] : Wi =
WitGen(pk, i, �m,K, r). Generate a Groth-Sahai proof of

knowledge that the following pairing product equations

are valid (group elements in bold are constants): ∀i ∈
[1, n] : e(G−1

i
,K) · e(Gn, H

mi

1 ) · e(Wi,H) = 1GT
; ∀i ∈

[1, n] : e(G1, H
mi) · e(G−1, Hmi

1 ) = 1GT
; ∀i ∈ [1, n] :

e(G2n, H
mi) · e(G−1, Hmi

2n ) = 1GT
. Output the proof φK

and the complementary commitments (from the Groth-Sahai

system), ∀i ∈ [1, n] : CmiH1
, CmiH , CmiH2n

, CWi
;CK .

• PV erifyProofCom(φK) → {0, 1}: Verify if the

Groth-Sahai proof of knowledge φK was correctly constructed.

•

(

PObtainSig(pk, �mP ) ↔ PIssueSig(sk, �mS)
)

→ σ:

– The User commits the message �mP as (K, r′) =
PCommit(pk, �mP ), then sends K to the Signer with a

proof of knowledge φK = PProveCom(pk, �mP ,K, r′)
that the commitment is valid.

– The Signer verifies the proof of knowledge with a call

to PV erifyProofCom(φK), updates the commitment to

K ′ = PUpdateCom(pk, �mS ,K), and blindly signs the

commitment with random seeds c, r′′
$
← Z

∗
q as: σ1 =

Hγ/(ω+c), σ2 = Gc, σ3 = U c, σ4 = (U0 · (K
′ ·Hr′′)β)c,

σ5 = (K ′ ·Hr′′)c, σ6 = K ′ ·Hr′′ , and σ′
r = r′′. The Signer

then sends σ′ = (σ1, σ2, σ3, σ4, σ5, σ6, σ
′
r) to the User.

– The User updates σr = r′ + σ′
r and outputs σ = (σ1, σ2,

σ3, σ4, σ5, σ6, σr).

• PProveSig(pk, �m, σ) → φσ: Parse σ = (σ1, σ2, σ3, σ4,

σ5, σ6, σr). Generate witnesses for each message signed ∀i ∈
[1, n] : Wi = WitGen(pk, i, �m, σ6, σr). Generate a Groth-

Sahai proof of knowledge that the following pairing product

equations are valid (the group elements in bold are constants):

– Signature equation validation: e(Ω, σ1) · e(σ2, σ1) ·
e(G, A−1) = 1GT

; e(σ2,U0) · e(U1, σ5) · e(G
−1, σ4) =

1GT
; e(σ2,U)·e(G−1, σ3) = 1GT

; e(G, σ5)·e(σ2, σ6)
−1 =

1GT
.

– Message pertinence validation: ∀i ∈ [1, n] : e(G−1

i
, σ6) ·

e(Gn, H
mi

1 ) · e(Wi,H) = 1GT
; ∀i ∈ [1, n] : e(G1, H

mi) ·
e(G−1, Hmi

1 ) = 1GT
; ∀i ∈ [1, n] : e(G2n, H

mi) ·
e(G−1, Hmi

2n ) = 1GT
.

– Equality commitment validation: e(G,A) · e(G,A−1) =
1GT

; e(G,H) = e(G,H)

Output the proof φσ and the complementary commit-

ments (from the Groth-Sahai system) ∀i ∈ [1, n] :
CmiH1

, CmiH , CmiH2n
, CWi

; ∀j ∈ [1, 6] : Cσj
;C−A, CG.

• PV erifyProofSig(φσ) → {0, 1}: Verify if the Groth-

Sahai proof of knowledge φσ was correctly constructed.

Table I lists the number of elements necessary for the

signature scheme when signing n messages.



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 201630

TABLE I
NUMBER OF ELEMENTS FROM EACH GROUP WHEN SIGNING n MESSAGES

Object Zq G1 G2 Object Zq G1 G2

Private key (sk) 3 0 0 Opening (open) 1 0 0

Public key (pk) 0 2 + n 3 + n Signature (σ) 1 1 5

Message (�m) n 0 0 Proof of commitment (φK ) 0 4 + 2n 6 + 6n

Commitment (K) 0 0 1 Proof of signature (φσ) 0 8 + 2n 18 + 6n

E. Compact e-cash

The compact e-cash scheme originally described in [6] and

revised in [7] allows a user to withdraw several coins (i.e.,

a wallet) within a single message. In the context of TCGs,

this scheme is interesting because it (1) allows several seed

parameters (instead of coins) to be signed altogether and

(2) it provides a direct method for identifying cheaters, who

have their public key recovered, so the server do not need to

screen the whole user database in search for the culprit. The

version actually adopted in the proposed solution is based on

the adaptation from [19], which achieves transferability with

strong anonymity, by means of the following operations (for

a concrete instantiation and details, see [7]):

• Setup: The bank generates a public/private key pair and

publishes its public key together with the system’s public

parameters.

• Register: The user randomly generates a public/private

key pair based on the system parameters and retrieves a

certificate from the bank for the public key generated in this

manner. The bank stores the user’s identity and corresponding

public keys, which allows users to be identified in case of

double-spending.

• Withdraw: The user produces seed values and commits

them to the bank, which in turn blindly signs those values.

This creates a new anonymous wallet with as many coins as

the number of seeds provided.

• Spend: Users may exchange either unspent coins from

their wallets or coins previously received. In the former case,

the user creates a new coin from the serial seed and treats

it just like a received coin. Each time a coin is spent, a

tag giving ownership of it to the receiver is added to the

coin representation, making it grow in size. All tags must be

verified by the receiver to ensure the previous transaction are

valid and, thus, that the coin actually hold value.

• Deposit: The user sends the coin to the bank, which

verifies if this coin had already been deposited. If it has, the

bank verifies if this is a case of double-deposit (i.e., if the

user is trying to deposit the same coin twice) or of double-

spending (i.e., if it was sent to two different users at some

point in time).

• Identify: In case of double-spending, the bank retrieves

the public key of the perpetrator, so the required administrative

penalties can be applied.

A wallet W = (skU , s, t, σ) is composed by the private key

skU of the owner, a serial seed s, a transfer seed t, and a

signature σ on these values. A coin C = (S, φS , φσ, πT =
{Tj , φTj

, rj , ij}) is identified by a serial number S and its

proof of validity φS , proof of knowledge on the signature

of the wallet φσ , and a set πT of j transferences. Each

transference is composed by a transference tag number Tj

and its proof of validity φTj
, a tag of ownership rj , and

some public information ij . When a coin is spent, a new tag

indicating the transference of ownership is inserted into πT .

The serial number S is picked at random to provide a

unique identifier for each coin. It is then employed in the

serial number generation function fS , a VRF that is defined

by Equation 2. In this equation, s is a seed signed in the wallet

and skU is the private key of the owner (or the index of the

coin, if more than one coin can be withdrawn).

fS(skU , s) = G
1

s+skU (2)

The transference tag T identifies each transference, also

picked at random. It is then employed in a modified version

of the VRF, the transference tag generation function fT
described in Equation 3. In this equation, t is a seed signed in

the wallet or referenced by previous transference, skU is the

secret key of the owner and R is the hash of the private (that

contains the owner) and public (e.g., a timestamp) information

of the transference.

fT (skU , t, R) =
(

GR
)skU

G
1

t+skU (3)

Finally, the ownership tag r is a randomly-picked value used

to hide the private key of the coin’s owner. Similarly to S, it is

employed in a VRF, the ownership tag generation function fr
from Equation 4, where skU is the private key of the owner and

i is some public information related to the transference. This

tag is used to create the transference tag that allows the owner

of the coin to prove that the last transference was directed to

him/her, so this information is used to compute R, linking the

transference tag T to the owner, represented by r.

fr(skU , i) = G
1

skU+i (4)

The revised version also presents a proof of knowledge pro-

tocol for the serial number generation ΦS :
(

Prove(skU , s) →
φS ;V erify(φS) → {0, 1}

)

, for the transference tag ΦT :
(

Prove(skU , t, R) → φT ;V erify(φT ) → {0, 1}
)

and for

the ownership tag Φr :
(

Prove(r, i) → φr;V erify(φr) →
{0, 1}

)

, based on Groth-Sahai proofs which proves the values

presented in the coin (S, T and R) were computed using

the respective functions. Due to space limitation, we refer the

reader to [7] for details.

IV. PROPOSED PROTOCOL

In this section we present a concrete instantiation of the

proposed scheme for secure trading cards, using the building

blocks described in Sec. III. The roles of registration center

C, card market M and game auditor A are played by the



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 2016 31 

game server G = C ∪M∪A. A card C is represented by the

tuple C = (ID, d, V, owner), where: ID ∈ G1 is its unique

identifier; d ∈ Zq is the numeric representation of the card’s

description using some suitable encoding; V = (φID, φσ),
where φID and φσ are, respectively, proofs of knowledge

of the construction of the ID and of the signature from the

market; and owner = πT = {Tj , φTj
, rj , ij} corresponds to

the records of all owners of the cards, so that, for each index

j in πT , Tj is the transference tag with proof of knowledge

of the construction φTj
, rj is the ownership tag and ij is the

public information regarding the transference.

The operations comprised by the proposed scheme are, then:

• Setup(): The game server generates the system pa-

rameters tcgparams = (pparamsC , pparamsM ) where

pparamsC and pparamsM are the parameters of two sig-

nature schemes, the first to register new players and the

second to stamp new cards. Both of them contain pa-

rameters of a Groth-Sahai proof system, defined over an

asymmetric pairing Λ. These parameters are used by the

subsequent operations and, for shortness, are omitted in

their descriptions. The game server also generates two key-

pairs: (skC , pkC) ← PKeyGen() to register players and

(skM , pkM ) ← PKeyGen() to stamp cards. It then publishes

tcgparams, pkC and pkM .

• Register(idP [, skP ]): Player P with identity idP gen-

erates a secret key skP
$
← Zq and computes the public

key pkP = e(G,H)skP . P generates a proof of knowledge

φP = GSProof
(

HskP in CskP
, θ = 1|e(Gθ, HskP ) =

pkP ∧ e(Gθ, H) = e(G,H)
)

. The triple (idP , pkP , φP ) is

sent to the registration center C. If the proof φP is valid, C
generates a signature σP = PSign(skC , {idP , pkP }). P can

then present σP as his/her certificate.

• Stamp
(

P(skP , pkM , d) ↔ M(skM , pkM , d)
)

: To pur-

chase an instance of a card with description d, player P
generates a partial identifier seed s′

$
← Zq and a trans-

ference seed t
$
← Zq , and the card market M gener-

ates the card’s partial identifier component s′′
$
← Zq .

Both parties execute the interactive protocol to obtain a

blind signature σs =
(

PObtainSig(pkM , {skP , s
′, t, 0}) ↔

PIssueSig(skM , {0, s′′, 0, d})
)

that is returned to P together

with s′′. The player then generates a proof of knowledge

φσ = PProveSig(pkM , {skP , s = s′ + s′′, t, d}, σs). After

that, P chooses some unique the public information i0 ←

{0, 1}∗ (e.g., a timestamp) and computes r0 = G
1

skP +H(i0) and

R0 = H(r0, i0). P then generates the unique identifier ID =
fS(skP , s) and the transference tag T0 = fT (skP , t, R0),
together with proofs of knowledge φID = ΦS .P rove(skP , s)
and φT0

= ΦT .P rove(skP , t, R0) of the construction, asso-

ciated with the commitments in the proof of signature φσ .

Finally, the player stores the card C = (ID, d, φID, φσ, πT =
{T0, φT0 , r0, i0}).

• Send
(

P1(skP1
, pkP2

, C) ↔ P2(skP2
, pkP1

)
)

: The re-

ceiver P2 chooses some public information i ← {0, 1}∗

and computes r = G
1

skP2
+H(i) and a proof of valid-

ity φr = Φr.P rove(skP2 , r,H(i)). P2 then sends the

tuple (i, r, φr) to the current card hold, P1. P1 parses

C = (ID, d, φID, φσ, πT = {Tj , φTj
, rj , ij}j=0...h) and

verifies the proof of validity Φr.V erify(φr, pkP2). If ev-

erything is correct, P1 first sets ih+1 = i and rh+1 =
r, and then computes Rh+1 = H(rh+1, ih+1) and t =
H(S, {Tj}j=0...h). Finally, P1 generates a new transfer-

ence tag Th+1 = fT (skP1 , t, Rh+1), as well as a proof

of knowledge φTh+1
= ΦT .P rove(skP1 , t, Rh+1) of the

construction. The card C ′ = (ID, d, φID, φσ, π
′

T =
{Tj , φTj

, rj , φrj , ij}j=0...(h+1)) is sent to P2. Upon recep-

tion, P2 verifies the construction of the unique identi-

fier ID by ΦS .V erify(φID) and the tags {Tj}j=0..h by
∧h+1

j=0 ΦT .V erify(φTj
), as well as that the proof of own-

ership φrh+1
is valid in respect to the public key pkP2

by

Φr.V erify(φrh+1
, pkP2

). If all proofs are correct, P2 stores

the card C ′ as his/her own.

• Play
(

P1(skP1
, C) ↔ P2(pkP1

)
)

: Player P1 prepares

a card C = (ID, d, φID, φσ, πT = {Tj , φTj
, rj , ij}j=0..h)

that has been updated h times. P1 chooses some arbi-

trary public information ih+1 ← {0, 1}∗ and computes

rh+1 = G
1

skP1
+H(ih+1) , Rh+1 = H(rh+1, ih+1) and t =

H(S, {Tj}j=0...h). Then P1 generates a new transference tag

Th+1 = fT (skP1 , t, Rh+1), together with proof of knowl-

edge φTh+1
= ΦT .P rove(skP1 , t, Rh+1) of the construction.

The card C is updated to C ′ = (ID, d, φID, φσ, π
′

T =
{Tj , φTj

, rj , φrj , ij}j=0...(h+1)) P1 also prepares two proofs

of knowledge φrh = Φr.P rove(skP2
,H(ih)) and φrh+1

=
Φr.P rove(skP2 ,H(ih+1)) to prove that the card was correctly

prepared The triple (C ′, φrh , φrh+1
) is sent to the match’s

opponent P2. Upon reception of C ′, P2 verifies the construc-

tion of the unique identifier ID by ΦS .V erify(φID) and

transference tags {Tj}j=0...(h+1) by
∧h+1

j=0 ΦT .V erify(φTj
),

and that both proofs of ownership φrh and φrh+1
are valid

in respect to the public key pkP1
by Φr.V erify(φrh , pkP1

)∧
Φr.V erify(φrh+1

, pkP1
). If they are all valid, P2 then stores

this card locally, so it can report this information to the game

server later, and uses the unique identifier ID to identify this

card during the match.

• Report
(

P(C) ↔ A(RS)
)

: Player P sends to the game

auditor A a card C = (ID, d, φID, φσ, πT = {Tj , φTj
, rj ,

ij}j=0...h) that an opponent has used in some match. A stores

C in the set of reported cards RS and verifies if there is any

card C̄ with identifier ¯ID = ID already reported in RS . For

each card C̄, A executes Identify(C, C̄), retrieving the list

of public keys of users who had illegally duplicated this card.

• Refresh
(

P(skP , C)↔
(

G = A(RS)∪M(skM , pkP )
)

)

:

Player P prepares a card C = (ID, d, φID, φσ, πT =
{Tj , φTj

, rj , ij}j=0...h) that has been updated h times. P
chooses some public information ih+1 ← {0, 1}∗ (e.g., a

timestamp) and computes rh+1 = G
1

skP +H(ih+1) , Rh+1 =
H(rh+1, ih+1) and t = H(S, {Tj}j=0...h). Then P generates

a new transference tag Th+1 = fT (skP , t, Rh+1), together

with proof of knowledge φTh+1
= ΦT .P rove(skP , t, Rh+1)

of the construction. The card C is updated to C ′ =
(ID, d, φID, φσ, π

′

T = {Tj , φTj
, rj , ij}j=0...(h+1)) and is sent

to the game server G. A stores C ′ in RS and verifies if there

is any card C̄ with identifier ¯ID = ID already reported in



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 201632

RS . For each card C̄, A executes Identify(C ′
, C̄), retrieving

the list of public keys of users who had illegally duplicated

this card. If identifying C ′ did not return any transgressor, both

parties execute Stamp
(

P(skP , pkM , d) ↔ M(skM , pkP )
)

to

produce a fresh card C ′′ to P .

• Identify(C, C̄): The game auditor A parses cards C =
(ID, d, φID, φσ, πT = {Tj , φTj

, rj , ij}j=0...h) and C̄ =
(S̄, ¯φID, φ̄σ, d̄, π̄T = {T̄j , φ̄Tj

, r̄j , īj}j=0...h̄) with the same

identifier ID = ¯ID. It searches for the first index l in which

Tl �= T̄l, computes Rl = H(rl, il) and R̄l = H(r̄l, īl),
and retrieves the public key of the perpetrator D as pkD =
(

Tl

T̄l

)
1

Rl−R̄l . If the index l is larger than the number of hops

for any card (h or h̄), this card had already been reported but

had not been duplicated, so the output is empty.

The requirements of a secure card trading system, as presented

in Sec. II, are fulfilled by the underlying e-cash scheme.

Namely, the signature on stamping method guarantees ver-

ifiability (“own” property), anonymity when stamping (the

signer cannot link signatures to new cards), and balance (if the

signature is unforgeable, a new card cannot be inconspicuously

created without authorization by the card market). The proof

of knowledge provides transferability on trading and ad-hoc

playing, given its non-interactivity property. It also keeps

anonymity when trading, since it is witness-indistinguishable

together with the VRF. Finally, the identification method of

the e-cash scheme guarantees balance, cheat detection and

exculpability.

V. PRELIMINARY EFFICIENCY ANALYSIS

Signing, n = 4 messages ({skP , s, t, d}) with the presented

P-signature scheme, a signature proof (φσ) requires 20 ele-

ments in G1 and 42 in G2 (see Table I). For the serial number

generation proof (φID), we need 24 elements in G1 and 26 in

G2. For the transference tag generation proof (φT ), we need

36 elements in G1 and 38 in G2. A card C is composed by:

the unique identifier ID (1 element in G1, output from fS)

the proofs of knowledge of ID (φID) and of the signature

from the market (φσ), and a set of transferences (πT ), updated

with each trade or play. Each transference j in the set is

in turn composed by: the transference tag Tj (1 element in

G1, output from fT ), the corresponding proof of knowledge

φTj
, the ownership tag rj (1 element in G1, output from fr),

and additional public information ij , which may have variable

length. Hence, for a total of t transferences and/or usages, a

card needs 45 + 38t elements in G1 and 68 + 38t in G2.

The execution time is likely dominated by the pairing

computations. Using a Groth-Sahai proof of knowledge, each

time a card is traded or used in a match, the total execution

cost corresponding basically to the 148 underlying pairing

computations. As each pairing is expected to take on the order

of 1 ms to run with [20] (Intel Core i5 1,6 GHz, 128-bit

security level), the total time would be around 150 ms per card

traded or played. We note that, while these timings are quite

reasonable for trading, they may be somewhat cumbersome

when playing with a deck having roughly 50 cards, as it is

common in commercial TCGs, since the verification of a deck

would take around 7.5 min. Nevertheless, it is important to

have in mind that the preparation of a deck can be done

beforehand, much before the match starts; in addition, the

verification of the corresponding proofs of knowledge can

happen in background during the match, which usually takes

several minutes. Therefore, in practice those costs can be made

transparent to players.

VI. CONCLUSIONS

In this paper, we presented the set of requirements for

allowing secure trades in P2P TCGs, defining the cheating

types that need to be detected. We then adapted a transferable

e-cash protocol for creating a concrete scheme that fulfills

those requirements The proposed scheme is based on the

P-signatures described in [17], which allows a vector of

messages to be signed, which is combined with a compact

blind signature scheme in the asymmetric pairing setting to

allow a more memory-efficient representation.

According to our preliminary analysis, the scheme is quite

efficient to be used in practice, especially considering that

the most expensive operations involved (namely, validating an

entire deck of cards) can be performed in background, either

before or during a match.

ACKNOWLEDGMENTS

This work was supported by the São Paulo Research

Foundation (FAPESP) under grant 2011/21592-8 and by the

National Counsel of Technology and Scientific Development

(CNPq) under grants 482342/2011-0 and 165874/2014-7.

REFERENCES

[1] M. A. Simplicio, M. A. Santos, R. R. Leal, M. A. Gomes, and W. A.
Goya, “SecureTCG: a lightweight cheating-detection protocol for P2P
multiplayer online trading card games,” Security and Communication

Networks, vol. 7, no. 12, pp. 2412–2431, 2014.
[2] D. Pittman and C. GauthierDickey, “Match+Guardian: a secure peer-to-

peer trading card game protocol,” Multimedia systems, vol. 19, no. 3,
pp. 303–314, 2013.

[3] A. Shamir, R. Rivest, and L. Adleman, “Mental poker,” in The

Mathematical Gardner, D. Klarner, Ed. Springer US, 1981, pp. 37–43.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4684-6686-7_5

[4] J. Castellà Roca, F. Sebé Feixas, and J. Domingo-Ferrer, Contributions

to mental poker. Universitat Autònoma de Barcelona„ 2006.
[5] D. Chaum and T. P. Pedersen, “Transferred cash grows in size,” in

Advances in Cryptology (Eurocrypt’92). Springer, 1993, pp. 390–407.
[6] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Compact e-cash,”

in Advances in Cryptology (Eurocrypt’05). Springer, 2005, pp. 302–
321.

[7] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya, “Compact
e-cash and simulatable vrfs revisited,” in Pairing’09. Springer, 2009,
pp. 114–131.

[8] G. Fuchsbauer, D. Pointcheval, and D. Vergnaud, “Transferable constant-
size fair e-cash,” in Cryptology and Network Security. Springer, 2009,
pp. 226–247.

[9] National Institute of Standards and Technology, DRAFT FIPS PUB

202: SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions. pub-NIST, May 2014. [Online]. Available:
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf

[10] M. Abe, J. Groth, M. Ohkubo, and T. Tango, “Converting cryptographic
schemes from symmetric to asymmetric bilinear groups,” in Advances

in Cryptology (CRYPTO’14). Springer, 2014, pp. 241–260.
[11] J. Groth and A. Sahai, “Efficient non-interactive proof systems for

bilinear groups,” in Advances in Cryptology (Eurocrypt’08). Springer,
2008, pp. 415–432.

[12] L. Ballard, M. Green, B. de Medeiros, and F. Monrose, “Correlation-
resistant storage,” TR-SP-BGMM-050507, Johns Hopkins UDCS, Tech.
Rep., 2005.



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 3, No. 1, Sep. 2016 33 

[13] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Foundations of Computer Science, 1999. 40th Annual Symposium on.
IEEE, 1999, pp. 120–130.

[14] Y. Dodis and A. Yampolskiy, “A verifiable random function with short
proofs and keys,” in Public Key Cryptography (PKC’05). Springer,
2005, pp. 416–431.

[15] D. Chaum, “Blind signatures for untraceable payments,” in Advances in

cryptology. Springer, 1983, pp. 199–203.
[16] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo,

“Structure-preserving signatures and commitments to group elements,”
in Advances in Cryptology (CRYPTO’10). Springer, 2010, pp. 209–236.

[17] M. Izabachène, B. Libert, and D. Vergnaud, “Block-wise P-signatures
and non-interactive anonymous credentials with efficient attributes,” in
Cryptography and Coding. Springer, 2011, pp. 431–450.

[18] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, “A heuristic quasi-
polynomial algorithm for discrete logarithm in finite fields of small
characteristic,” in Advances in Cryptology (Eurocrypt’14). Springer,
2014, pp. 1–16.

[19] S. Canard, A. Gouget, and J. Traoré, “Improvement of efficiency in (un-
conditional) anonymous transferable e-cash,” in Financial Cryptography

and Data Security. Springer, 2008, pp. 202–214.
[20] D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López,

“Faster explicit formulas for computing pairings over ordinary curves,”
in Advances in Cryptology–EUROCRYPT 2011. Springer, 2011, pp.
48–68.

Marcos Vinicius Maciel da Silva received his
BSc (2013) in Electrical/Computing Engineering at
the Escola Politécnica, Universidade de São Paulo,
Brazil. He is currently following his MSc on Electri-
cal/Computing Engineering at the same institution.
He has experience in the area o Computer Science,
with especial interest in the following topics: cloud
computing, zero-knowledge proofs, blind signature
and electronic cash protocols.

Marcos Antonio Simplicio Junior is an Assistant
Professor in the Department of Computer and Dig-
ital Systems Engineering at the Escola Politécnica,
Universidade de São Paulo, Brazil. He received his
BSc (2006), MSc (2008) and PhD (2010) degrees
in Electrical/Computing Engineering at the same
institution, and also has a Master degree (2006)
in Engineering conferred by the Ecole Centrale
Des Arts Et Manufactures (Ecole Centrale Paris),
France. His main research interests and the focus of
the projects coordinated by him include: (applied)

cryptography, including the design and analysis of algorithms and protocols;
and network security, in particular solutions tailored for scenarios involving
resource-constrained devices (e.g., sensor networks), and distributed systems
(e.g., cloud computing and P2P networks).


