
ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201465

Abstract— �Software security is nowadays a hot research topic,

particularly in the Web domain. In fact, due to the impressive

growth of the Internet and of Web applications, software security

has become one vital concern in any information infrastructure.

This paper discusses key techniques for security testing and

assessment, providing the basis for understanding existing

research challenges on developing and deploying secure Web

applications.

Keywords— Security, Web applications, Vulnerabilities,

Benchmarking, Secure Processes.

I. INTRODUCTION
HE GOAL of security is to protect systems and data from
intrusion. The risk of intrusion is related to the system

vulnerabilities and the potential security attacks. The system

vulnerabilities are an internal factor related to the set of
security mechanisms available (or not available) in the system,
the correct configuration of those mechanisms, and the hidden
flaws on the system implementation. Many types of
vulnerabilities are known and also taxonomies to classify them
[1]. Vulnerability prevention consists on guarantying that the
software has the minimum vulnerabilities possible (e.g. using
security testing). On the other hand, vulnerability removal is
the process of mitigating the vulnerabilities found in the
system (e.g. by applying new security patches released by
software vendors).

Security attacks are an external factor that mainly depends
on the intentionality and capability of humans to maliciously
break into the system tacking advantage of vulnerabilities. In
fact, the success of a security attack depends on the
vulnerabilities of the system and attacks are harmless in a
system without vulnerabilities. On the other hand,
vulnerabilities are harmless if the system is not subject of
security attacks. The prevention against security attacks
includes all the measures needed to minimize or eliminate the
potential attacks against the system (by reducing the potential
attack surface). Attack removal is related to the adoption of
measures to stop attacks that have occurred before (e.g. using
intrusion detection).

Secure Software behaves correctly in the presence of a
malicious utilization (attack), even though software failures
may also happen when the software is used correctly [2].
Thus, many times software development and testing concerns
only with what happens when software fails and not with the
intentions. This is where the difference between software
safety and software security lies: in the presence of an
intelligent adversary with the intention of damaging the
system.

�M. Vieira, Universityof Coimbra (UC), Coimbra, Portugal,
mvieira@dei.uc.pt

In the last two decades, the World Wide Web radically
changed the way people communicate and do business. The
problem is that, as the importance of the assets stored and
managed by web applications increases, so does the natural
interest of malicious minds in exploiting this new streak. In
fact, web applications are so widely exposed that any existing
security vulnerability will most probably be uncovered and
exploited by hackers. Hence, the security of web applications
is a major concern and is receiving more and more attention
from the research community. However, in spite of this
growing awareness of security aspects at web application
level, there is an increase in the number of reported attacks
that exploit web application vulnerabilities [3], [4].

To prevent vulnerabilities developers must apply best
coding practices, perform security reviews, execute
penetration testing, use code vulnerability detectors, etc. Still,
many times developers focus on the implementation of
functionalities and on satisfying the costumer’s requirements
and disregard security aspects. Also, most developers are not
security specialists and the common time-to-market
constraints limit an in-depth search for vulnerabilities.
Another problem is that, traditional security mechanisms like
network firewalls, intrusion detection systems (IDS), and
encryption, are not able to mitigate web application attacks
because they are performed through ports that are used for
regular web traffic [5] and even application layer firewalls can
not protect the applications as that requires a deep
understanding of the business context [6]. In this scenario, a
large effort should be put on improving the state of the art in
the security of software systems.

This paper discusses key concepts, techniques and tools for
testing and assessing security in the context of Web
applications and services. First, we discuss techniques and
tools for detecting vulnerabilities, which have the greatest
importance to help developers producing more secure code.
Second, we introduce the concept of Vulnerability and Attack
Injection, whose goal is to provide the means to introduce
realistic vulnerabilities in applications code. This is extremely
useful in different contexts, including: 1) for training security
teams; 2) to evaluate security teams in a controlled
environment; and 3) to estimate the total number of
vulnerabilities still present in the code. Then we discuss
security evaluation from the benchmarking (i.e. comparison)
point-of-view, which allows assessing and comparing the
security of systems and/or components, supporting informed
decisions while designing, developing, and deploying complex
software systems. Finally, we put security in the context of the
development lifecycle, emphasizing the key security aspects
that should be kept in mind when developing Web
applications.

M. Vieira

Securing Web Applications: Techniques and
Challenges

T

Invited Paper

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 66

II. SECURITY TESTING
To identify security issues, developers must focus not only

on testing the functionalities of the application but also on
searching for dangerous security vulnerabilities that are
present in the code and that can be maliciously exploited [2].
In this scenario, automated tools have a very important role on
helping the developers to produce less vulnerable code.

Different techniques for the detection of vulnerabilities
have been proposed in the past [1], but in practice these
techniques can be divided in two main groups: white-box
analysis, which consists of examining the code of the
application without executing it (this can be done in one of
two ways: manually during code inspections and reviews or
automatically by using automated analysis tools); and black-
box testing, which refers to the analysis of the program
execution from an external point-of-view (in short, it consists
of exercising the software and comparing the execution
outcome with the expected result). Black-box testing is
probably the most used technique for verification and
validation of software.

In the context of security, both black-box testing and white-
box analysis have limitations that are intrinsic to their
characteristics. Black-box testing is based on the effective
execution of the code and in practice vulnerability
identification is only based on the analysis of the web
application output. This way, the effectiveness of the process
is always limited by the lack of visibility on the internal
behavior of the application. On the other hand, white-box
approaches like static analysis are normally based on the
examination of the source code. The main problem here is that
exhaustive source code analysis may be difficult and cannot
find many security flaws due to the complexity of the code
and the lack of a dynamic (runtime) view. Of course, black-
box testing does not require access to the source code while
static analysis does.

The effectiveness of automated vulnerability detection
tools is frequently very low, thus using the wrong tool may
lead to the deployment of applications with undetected
vulnerabilities. The work presented in [7] shows the main
findings of a practical study that compares the effectiveness of
very well known and largely used penetration testing and
static analysis tools in the detection of SQL Injection
vulnerabilities in Web Services. Results show that the
coverage of static code analysis tools (including FindBugs,
Fortify 360, and IntelliJ IDEA) is typically much higher than
of penetration testing tools (including HP WebInspect, IBM
Rational AppScan, and Acunetix Web Vulnerability). False
positives are a problem for both approaches, but have more
impact in the case of static analysis. A key observation is that
different tools implementing the same approach frequently
report different vulnerabilities in the same code.

The challenge is that, although we frequently trust
vulnerability detection tools, results highlight their limitations
suggesting that it is necessary to improve the state of the art in
vulnerability detection, for instance by combining different
approaches. Also, it is important to define mechanisms to

evaluate and compare different tools in order to select the
tools that best fit each development scenario.

III. VULNERABILITY AND ATTACK INJECTION
Fault injection has become an attractive approach to

validate specific fault handling mechanisms and to assess the
impact of faults in actual systems, allowing the estimation of
fault-tolerant system measures such as fault coverage and
error latency [1]. In the past decades, research on fault
injection has specially targeted the emulation of hardware
faults, where a large number of works has shown that it is
possible to emulate these faults in a quite realist way (e.g. [8],
[9]). More recently the interest on the injection of software
faults has increased, giving raise to several works on the
emulation of this type of faults (e.g., [10], [11]). In practice,
software fault injection deliberately introduces faults into the
system in a way that emulates real software faults. A reference
technique is G-SWFI (Generic Software Fault Injection
Technique [10]), which supports the injection of realistic
software faults (i.e. faults most likely present in a software)
using educated code mutation. The faults injected are
described in a library derived from an extensive field study
aimed at identifying the types of bugs that can reasonably be
expected to occur frequently in a software system.

The use of fault injection techniques to assess security is a
particular case of software fault injection, focused on the
software faults that represent security vulnerabilities or may
cause the system to fail in avoiding a security problem.
Security vulnerabilities are in fact a particular case of software
faults, which require adapted injection approaches.

In [12] the vulnerabilities of six web applications were
analyzed using field data based on a set of 655 security fixes.
Results show that only a small subset of 12 generic software
faults is responsible for all the security problems. In fact, there
are considerable differences by comparing the distribution of
the fault types related to security with studies of common
software faults.

Neves et al. proposed a tool (AJECT) focused on
discovering vulnerabilities on network servers, specifically on
IMAP servers [13]. In their work the fault space is the
binomial (attack, vulnerability) creating an intrusion that may
cause an error and, possibly, a failure of the target system. To
attack the target system they used predefined test classes of
attacks and some sort of fuzzing.

A procedure inspired on the fault injection technique (that
has been used for decades in the dependability area) targeting
security vulnerabilities is proposed in [14]. In this work, the
"security vulnerability" plus the "attack" represent the space of
the "faults" that can be injected in a web application; and the
"intrusion" is the "error". To emulate with accuracy real world
web vulnerabilities this work relies on the results obtained in a
field study on real security vulnerabilities, which were used to
develop a novel Vulnerability Injection tool.

Conceptually, attack injection is based on the injection of
realistic vulnerabilities that are automatically attacked, and
finally the result of the attack is evaluated. As proposed in
[15], a tool able to perform vulnerability and attack injection

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201467

is a key instrument that can be used in several relevant
scenarios, namely: building a realistic attack injector, train
security teams, evaluate security teams, and estimate the total
number of vulnerabilities still present in the code, among
others.

The challenge is that current knowledge on vulnerability
and attack models is quite limited, and additional studies are
required to better understand how, where and when such faults
should be injected (in a way that assures high
representativeness). Also, existing work is focused on very
specific types of vulnerabilities in the Web domain. Extending
such approaches to additional domains is a relevant research
challenge.

IV. SECURITY BENCHMARKING
Computer benchmarks are standard tools that allow

evaluating and comparing different systems or components
according to specific characteristics (e.g. performance,
robustness, dependability, etc.) [16]. The work on
performance benchmarking has started long ago. Ranging
from simple benchmarks that target very specific hardware
systems or components to very complex benchmarks focusing
complex systems (e.g. database management systems,
operating systems), performance benchmarks have contributed
to improve successive generations of systems. Research on
dependability benchmarking boosted in the beginning of this
century [17]. Several works have been done by different
groups and following different approaches (e.g. experimental,
modeling, fault injection). Finally, work on security
benchmarking is a new topic with many open questions.

Several security evaluation methods have been proposed in
the past [18]–[21]. The Orange Book [20] and the Common
Criteria for Information Technology Security Evaluation [19]
define a set of generic rules that allow developers to specify
the security attributes of their products and evaluators to
verify if products actually meet their claims. Another example
is the red team strategy [21], which consists of a group of
experts trying to hack its own computer systems to evaluate
security.

The work presented in [22] addresses the problem of
determining, in a thorough and consistent way, the reliability
and accuracy of anomaly detectors. This work addresses some
key aspects that must be taken into consideration when
benchmarking the performance of anomaly detection in the
cyber-domain.

The set of security configuration benchmarks created by
the Center for Internet Security (CIS) is a very interesting
initiative [23]. CIS is a non-profit organization formed by
several well-known academic, commercial, and governmental
entities that has created a series of security configuration
documents for several commercial and open source systems.
These documents focus on the practical aspects of the
configuration of these systems and state the concrete values
each configuration option should have in order to enhance
overall security of real installations. Although CIS refers to
these documents as benchmarks they mainly reflect best

practices and are not explicitly designed for systems
assessment or comparison.

Vieira & Madeira proposed a practical way to characterize
the security mechanisms in database systems [24]. In this
approach database management systems (DBMS) are
classified according to a set of security classes ranging from
Class 0 to Class 5 (from the worst to the best). Systems are
classified in a given class according to the security
requirements satisfied. In [25] the authors analyze the security
best practices behind the many configuration options available
in several well-known DBMS. These security best practices
are then generalized and used to define a set of configuration
tests that can be used to compare different database
installations. A benchmark that allows database administrators
to assess and compare database configurations is presented in
[26]. The benchmark provides a trust-based security metric,
named minimum untrustworthiness, that expresses the
minimum level of distrust the DBA should have in a given
configuration regarding its ability to prevent attacks.

The use of trust-based metrics as an alternative to security
measurement is discussed in [27]. This work also proposed a
trustworthiness benchmark based on the systematic collection
of evidences (collected using static analysis techniques) that
can be used to select one among several web applications,
from a security point-of-view.

Security benchmarking, and security assessment in general,
is an open research problem. In fact, although there are several
works in the literature, there is no “good enough” model for
assessing and comparing the security of alternative systems
and components. A key issue is that security is largely related
with the “unknown” vulnerabilities and attacks, and
comparing systems based on well defined attackloads may
lead to conclusions that ultimately do not hold in the field (e.g.
when a new vulnerability or attack type is discovered). Thus
additional work is required to best understand the problem,
propose generic frameworks and models for security
comparison, studying the representativeness of attackloads,
understand how new vulnerability and attack types can be
considered, etc.

V. SECURITY IN THE SOFTWARE PROCESS
A software development process is composed of multiple

phases [28]. To improve the situation in software security it is
important not only to understand the existing approaches and
tools but also to adequately integrate them in the development
process, i.e. to use such approaches and tools in the points of
the process where they can make the difference. Different
authors divide the software process in different ways, but
usually software development includes the following phases
(which can be repeated in an iterative manner): initialization,
design, implementation, testing, deployment and
decommissioning.

The process starts with requirements gathering (including
security requirements), followed by specification and design,
implementation (coding), testing and deployment.
Decommission takes place when the product is not useful/used
anymore. Although code security concerns should be

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 68

addressed during the entire software product development
lifecycle, as highlighted by [29] especial focus should be put
in three key phases [30]: implementation, testing, and
deployment. The next points summarize the main challenges
and put in the context of these three phases the concepts and
techniques introduced before:
x Implementation: during coding we must use best

practices that avoid the most critical vulnerabilities in the
specific application domain. Examples of practices
include input and output validation, the escaping of
malicious characters, and the use of parameterized
commands [1]. Vulnerability and attack injection
techniques have in this phase a very important job in the
evaluation of the best security testing tools to use. Also,
for the success of this phase, it is essential to adequately
train the development teams. For instance, experience
shows that the main reason for the vulnerabilities
existing in web application’s code is related to training
and education. First, there is a lack of courses/topics
regarding secure design, secure coding, and security
testing, in most computer science degrees [30]. Second,
security is not usually among the developers’ main skills
as it is considered a boring and uninteresting topic (from
the development point-of-view), and not as a way to
develop new and exciting functionalities.

x Testing: as introduced before, there are many security
testing techniques available for the identification of
vulnerabilities during the testing phase [1]. To mitigate
vulnerabilities, it is necessary to have well-trained teams
read that adequately apply those techniques during the
development of the application. The problem is that
software quality assurance teams typically lack the
knowledge required to effectively detect security
problems. It is necessary to devise approaches to quickly
and effectively train security assurance teams in the
context of web applications development, by combining
vulnerability injection with relevant guidance
information about the most common security
vulnerabilities. Also, benchmarking techniques should be
applied to assess, compare, and select the most adequate
security testing tools for each concrete scenario.

x Deployment: at runtime, it is possible to include in the
environment different attack detection mechanisms, such
as Intrusion Detection Systems (IDS) and Web
Application Firewalls (WAF), among others. These
mechanisms can operate at different levels and use
different detection approaches. The main problems
preventing their use are related to the performance
overheads and to the false positives that disrupt the
normal behavior of the system. In this phase, security
benchmarking plays a fundamental role in helping to
select the best alternatives (in terms of servers, security
mechanisms, etc.) to use, according to specific security
requirements. Also, vulnerability and attack injection
techniques represent in this phase an efficient way to
evaluate the effectiveness of attack detections
mechanism to be installed.

VI. CONCLUSION
In this paper we introduced techniques for security testing

and assessment in the context of web applications (some of
them quite novel such as security benchmarking and
vulnerability and attack injection). As an essential condition
for deploying secure systems, we also discussed aspects
related to the software development process. These are of
extreme importance for software designers and developers and
allow an effective assessment of the security attributes of the
software components being designed/deployed.

The paper highlighted several research challenges in an
attempt to motivate further research in these topics. The paper
did not intend to provide a comprehensive survey, but to focus
on key promising aspects in which research is need, but that
can already be applied in the context of the software industry.

REFERENCES
[1] D. Stuttard and M. Pinto, The web application hacker’s handbook:

discovering and exploiting security flaws. Wiley Publishing, Inc., 2007.
[2] G. McGraw and B. Potter, “Software Security Testing,” IEEE Security

and Privacy, vol. 2, no. 5, pp. 81–85, 2004.
[3] S. Christey and R. A. Martin, “Vulnerability type distributions in CVE,”

V1. 0, vol. 10, p. 04, 2006.
[4] A. Stock, J. Williams, and D. Wichers, “OWASP Top 10,” 2007.
[5] A. Singhal, T. Winograd, and K. Scarfone, “Guide to Secure Web

Services: Recommendations of the National Institute of Standards and
Technology,” Report, National Institute of Standards and Technology,
US Department of Commerce, pp. 800–95, 2007.

[6] OWASP Foundation, “OWASP Application Security FAQ Version 3,”
2010. [Online]. Available:
http://www.owasp.org/index.php/OWASP_Application_Security_FAQ.
[Accessed: 09-Aug-2010].

[7] N. Antunes and M. Vieira, “Comparing the Effectiveness of Penetration
Testing and Static Code Analysis on the Detection of SQL Injection
Vulnerabilities in Web Services,” in 15th IEEE Pacific Rim
International Symposium on Dependable Computing, 2009. PRDC ’09,
Shanghai, China, 2009, pp. 301–306.

[8] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the
experimental evaluation of dependability in modern computers,” IEEE
Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136,
1998.

[9] M. Rodríguez, F. Salles, J.-C. Fabre, and J. Arlat, “MAFALDA:
Microkernel Assessment by Fault Injection and Design Aid.,” in EDCC,
1999, vol. 1667, pp. 143–160.

[10] J. A. Duraes and H. S. Madeira, “Emulation of Software Faults: A Field
Data Study and a Practical Approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 11, pp. 849–867, 2006.

[11] J. Durães and H. Madeira, “Definition of Software Fault Emulation
Operators: A Field Data Study.,” in DSN, 2003, pp. 105–114.

[12] J. Fonseca and M. Vieira, “Mapping software faults with web security
vulnerabilities,” presented at the IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC, 2008. DSN
2008., 2008, pp. 257–266.

[13] N. Neves, J. Antunes, M. Correia, P. Verissimo, and R. Neves, “Using
Attack Injection to Discover New Vulnerabilities,” in International
Conference on Dependable Systems and Networks, 2006. DSN 2006,
2006, pp. 457–466.

[14] J. Fonseca, M. Vieira, and H. Madeira, “Testing and Comparing Web
Vulnerability Scanning Tools for SQL Injection and XSS Attacks,” in
13th Pacific Rim International Symposium on Dependable Computing
(PRDC 2007), Melbourne, Australia, 2007, pp. 365–372.

[15] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability & attack injection
for web applications,” in IEEE/IFIP International Conference on
Dependable Systems & Networks, 2009. DSN ’09, 2009, pp. 93–102.

[16] J. Gray, Benchmark Handbook: For Database and Transaction
Processing Systems. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992.

[17] K. Kanoun and L. Spainhower, Dependability Benchmarking for
Computer Systems. Wiley-IEEE Computer Society Pr, 2008.

is a key instrument that can be used in several relevant
scenarios, namely: building a realistic attack injector, train
security teams, evaluate security teams, and estimate the total
number of vulnerabilities still present in the code, among
others.

The challenge is that current knowledge on vulnerability
and attack models is quite limited, and additional studies are
required to better understand how, where and when such faults
should be injected (in a way that assures high
representativeness). Also, existing work is focused on very
specific types of vulnerabilities in the Web domain. Extending
such approaches to additional domains is a relevant research
challenge.

IV. SECURITY BENCHMARKING
Computer benchmarks are standard tools that allow

evaluating and comparing different systems or components
according to specific characteristics (e.g. performance,
robustness, dependability, etc.) [16]. The work on
performance benchmarking has started long ago. Ranging
from simple benchmarks that target very specific hardware
systems or components to very complex benchmarks focusing
complex systems (e.g. database management systems,
operating systems), performance benchmarks have contributed
to improve successive generations of systems. Research on
dependability benchmarking boosted in the beginning of this
century [17]. Several works have been done by different
groups and following different approaches (e.g. experimental,
modeling, fault injection). Finally, work on security
benchmarking is a new topic with many open questions.

Several security evaluation methods have been proposed in
the past [18]–[21]. The Orange Book [20] and the Common
Criteria for Information Technology Security Evaluation [19]
define a set of generic rules that allow developers to specify
the security attributes of their products and evaluators to
verify if products actually meet their claims. Another example
is the red team strategy [21], which consists of a group of
experts trying to hack its own computer systems to evaluate
security.

The work presented in [22] addresses the problem of
determining, in a thorough and consistent way, the reliability
and accuracy of anomaly detectors. This work addresses some
key aspects that must be taken into consideration when
benchmarking the performance of anomaly detection in the
cyber-domain.

The set of security configuration benchmarks created by
the Center for Internet Security (CIS) is a very interesting
initiative [23]. CIS is a non-profit organization formed by
several well-known academic, commercial, and governmental
entities that has created a series of security configuration
documents for several commercial and open source systems.
These documents focus on the practical aspects of the
configuration of these systems and state the concrete values
each configuration option should have in order to enhance
overall security of real installations. Although CIS refers to
these documents as benchmarks they mainly reflect best

practices and are not explicitly designed for systems
assessment or comparison.

Vieira & Madeira proposed a practical way to characterize
the security mechanisms in database systems [24]. In this
approach database management systems (DBMS) are
classified according to a set of security classes ranging from
Class 0 to Class 5 (from the worst to the best). Systems are
classified in a given class according to the security
requirements satisfied. In [25] the authors analyze the security
best practices behind the many configuration options available
in several well-known DBMS. These security best practices
are then generalized and used to define a set of configuration
tests that can be used to compare different database
installations. A benchmark that allows database administrators
to assess and compare database configurations is presented in
[26]. The benchmark provides a trust-based security metric,
named minimum untrustworthiness, that expresses the
minimum level of distrust the DBA should have in a given
configuration regarding its ability to prevent attacks.

The use of trust-based metrics as an alternative to security
measurement is discussed in [27]. This work also proposed a
trustworthiness benchmark based on the systematic collection
of evidences (collected using static analysis techniques) that
can be used to select one among several web applications,
from a security point-of-view.

Security benchmarking, and security assessment in general,
is an open research problem. In fact, although there are several
works in the literature, there is no “good enough” model for
assessing and comparing the security of alternative systems
and components. A key issue is that security is largely related
with the “unknown” vulnerabilities and attacks, and
comparing systems based on well defined attackloads may
lead to conclusions that ultimately do not hold in the field (e.g.
when a new vulnerability or attack type is discovered). Thus
additional work is required to best understand the problem,
propose generic frameworks and models for security
comparison, studying the representativeness of attackloads,
understand how new vulnerability and attack types can be
considered, etc.

V. SECURITY IN THE SOFTWARE PROCESS
A software development process is composed of multiple

phases [28]. To improve the situation in software security it is
important not only to understand the existing approaches and
tools but also to adequately integrate them in the development
process, i.e. to use such approaches and tools in the points of
the process where they can make the difference. Different
authors divide the software process in different ways, but
usually software development includes the following phases
(which can be repeated in an iterative manner): initialization,
design, implementation, testing, deployment and
decommissioning.

The process starts with requirements gathering (including
security requirements), followed by specification and design,
implementation (coding), testing and deployment.
Decommission takes place when the product is not useful/used
anymore. Although code security concerns should be

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201469

[18] Commission of the European Communities, The IT Security Evaluation
Manual (ITSEM). 1993.

[19] P. K. Infrastructure and T. P. Profile, “Common Criteria for Information
Technology Security Evaluation,” 2002.

[20] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R. Mahajan, “Trusted
computer system evaluation criteria,” in National Computer Security
Center, 1985.

[21] Sandia National Laboratories, “Information Operations Red Team and
AssessmentsTM.” [Online]. Available: http://www.sandia.gov/iorta/.
[Accessed: 23-Sep-2012].

[22] R. A. Maxion and K. M. C. Tan, “Benchmarking anomaly-based
detection systems,” in Proceedings International Conference on
Dependable Systems and Networks, 2000. DSN 2000, 2000, pp. 623 –
630.

[23] “Center for Internet Security.” [Online]. Available:
http://www.cisecurity.org/. [Accessed: 23-Sep-2012].

[24] M. Vieira and H. Madeira, “Towards a security benchmark for database
management systems,” in International Conference on Dependable
Systems and Networks, 2005. DSN 2005., Yokohama, Japan, 2005, pp.
592 – 601.

[25] A. A. Neto and M. Vieira, “Towards assessing the security of DBMS
configurations,” in IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC, 2008. DSN 2008, 2008,
pp. 90 –95.

[26] A. A. Neto and M. Vieira, “A Trust-Based Benchmark for DBMS
Configurations,” in 15th IEEE Pacific Rim International Symposium on
Dependable Computing, 2009. PRDC ’09, 2009, pp. 143 –150.

[27] A. A. Neto and M. Vieira, “Benchmarking Untrustworthiness,”
International Journal of Dependable and Trustworthy Information
Systems, vol. 1, no. 2, pp. 32–54, 32 2010.

[28] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software
engineering. Prentice Hall PTR Upper Saddle River, NJ, USA, 2002.

[29] G. McGraw, Software Security: Building Security In. Addison-Wesley
Professional, 2006.

[30] M. Howard and D. E. Leblanc, Writing Secure Code, 2nd ed. Redmond,
Washington: Microsoft Press, 2002.

Marco Vieirais an assistant professor at the University of
Coimbra, Portugal. His interests include dependability and
security benchmarking, experimental dependability
evaluation, fault injection, software development pro-cesses,
and software quality assurance. Vieira received a PhD in
computer engineering from the University of Coimbra. He is

a member of the IEEE Computer Society.

