
ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201437

Isomorphism Theorem and Cryptology
R. L. de Carvalho and F. L. de Mello

Abstract— This paper presents a Theory of Computation
study based on recursive functions computability and innovates
by performing parallels to relevant themes of Cryptography.
Hence, it is presented the Hennie’s notion of "abstract family
of algorithms" (AFA, for short) according to the authors’ un-
derstanding, and also more judicious theorems demonstrations,
many times completely different from those ones available in
literature. The main issue is the Isomorphism Theorem which
supports the Church-Turing Thesis and provides a connection
between Cryptology and Linguistics.

Keywords— Algorithm, Recursive functions, Church-Turing
Thesis, Fixed point theorem, Recursion theorem, Isomorphism
theorem.

I. INTRODUCTION

THE CODIFICATION is based on conversion rules whose
objective is to transform a piece of information, a mes-

sage, into a new representation of the same information. Under
the Cryptology point of view, this concept remains valid, but
it is added to it a strong constraint associated to the intention
of keeping the message content restricted to an entity group,
and obscured to everyone else. Thus, the informative content
representation is transformed by an algorithm, producing a
symbol sequence which belongs to the new depiction universe.
Those transformation procedures are known by the Theory of
Computation as Transductive Formal Systems [7].

Algorithms that convert a sequence of symbols into a
new one, preserving the informative content, are known as
compilers and interpreters. Besides the existence of important
differences between compilers and interpreters, both of them
have the responsibility of performing a language translation.
Usually, this kind of translation is done from a high-level
language to a low-level one. However, there is no obstacle
against a translation performed on the other way round, or
even from high-level to high-level, or from low-level to low-
level.

Similarly, a sequence of symbols from a language plaintext
is converted by a encoding algorithm into a new sequence
from a cryptographic language. By this reason, it possible to
be more specific by asserting that cryptographic algorithms
translate a plaintext message to other languages such as Triple-
DES, Blowfish, SEAL, MD5, among others. This approach is
unconventional in Cryptology. Nevertheless, the existence of
terms such as alphabet, communication, dictionary, corpus and
corpora, available not only on Cryptography studies, but also
on general Linguistics studies and on Theory of Computa-
tion, suggests an obtainable intersection regions among these
knowledge areas.

R. L. de Carvalho (Ph.D.), Witty Group leader for artificial intelligence and
knowledge visualization fields, rlins@globo.com

F. L. de Mello (D.Sc.), Assistant Professor at Electronics and Computation
Engineering Department from Polytechnic School at Federal University of
Rio de Janeiro, fmello@del.ufrj.br

On Theory of Computation, the Church-Turing Thesis states
the direct relationship between algorithms and languages. It
provides a correlation between the act of calculating and the
algorithms materialization, that is, the computer programs. The
calculus is the execution of methodic sequence actions, and the
programs representation is provided by the language.

Thus, this article aims to use Theory of Computation
concepts so as to produce a deeper comprehension about the
algorithms and the objects to be represented. This approach
provides a rigorous understanding about the subject and sug-
gests a correlation between Cryptology and Linguistics.

II. CHURCH-TURING THESIS

The Church-Turing Thesis, shown in Fig. 1, is not a theorem
but an epistemic result which acceptance is almost universal.
The intuitive concept of computable is associated to a class
of arithmetic functions called recursive functions [1]. It can
be reasoned that if a hypothesis cannot be directly proved,
then maybe it can be refutated. Consequently, in order to deny
the thesis it is sufficient to find out just one procedure that
cannot be demonstratively computed by a Turing Machine.
This procedure has not been found so far, and more over,
because there are a considerable number of favorable experi-
mental data, researches tend to accept the thesis. In addition,
several attempts to specify the algorithm concept resulted
into formalisms that can be demonstrated as equivalent to the
Turing Machine.

Figure 1. Illustrative scheme from Church-Turing Thesis suggesting that
all formalisms to define an algorithm are supposed to be equivalent among
themselves.

Therefore, the Church-Turing Thesis is a hypothesis on the
mechanical nature of the act of calculating, describing a direct
relationship to the computer, and to the different types of
algorithms that can be executed by a machine. Thus, every
function considered to be systematic can be computed by
a Turing Machine. Any kind of programs can be translated
to a Turing Machine, and also, any Turing Machine can
be translated to a programming language. Consequently, any
ordinary programming language is sufficient to represent any
algorithm, whatever is its purpose.

Invited Paper

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 38

III. ALGORITHMS

An algorithm a description of a function calculus or eval-
uation performed in a systematic way. The main elements
associated to this idea are enumerated as follows:

1) Finite size instruction set: an algorithm must be de-
scribed by a language into a finite fashion. Assuming an
enumerable alphabet, the algorithm must be composed
by a finite string over this alphabet.

2) Algorithm domain: composed by data, the set objects
processed by an algorithm, for instance, a chain of
symbols, natural numbers, etc.

3) Computer agent: the description computation results into
a well defined sequence of operations or steps, that
depends on an agent associated to the algorithm. This
agent must be deterministic, that is, he should react to
the algorithm instructions forever in the same way. For
each input, the algorithm must have always the same
behavior: if it halts, it will have always the same output;
if it does not halt, it diverges.

4) Facilities to execute, store and retrieve steps: the intu-
itive notion of memory emerges as an agent resource.
The maximum size of the memory, and consequently
the input size of the algorithm, is an aspect to be taken
for each computer agent. However, once this limit can
be indefinitely extended, its existence is not considered.

5) Agent capability: by using a limited set of skills, the
agent must be capable of computing any algorithm.

6) The end of computation: once all instructions have been
executed, the agent provides the appropriate results,
according to the input arguments of the domain. This
does not mean that the algorithm should halt to any
domain input. For instance, the natural numbers division
can indefinitely operate if the dividend is not divisible
by the divisor.

One of the first models of abstract machine, as an attempt to
define an algorithm, was the Turing Machine. The following
excerpt is a abridgement of Alan Turing understanding of what
is a computer [12]. The reader must be aware that Turing wrote
this text before the invention of the machine called computer,
but it is really fascinating how it is still acceptable and precise.

Computing is normally done by writing certain symbols on
paper1. We may suppose this paper is divided into squares
like a child’s arithmetic book. [...] it will be agreed that two-
dimensional character of paper is no essential of computing.
[...] I shall also suppose that the number of symbols which
may be printed is finite. [...] The behavior of the computer
at any moment is determined by the symbols which He is
observing, and his "‘state of mind"’ at that moment. We may
suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he
wishes to observe more, he must use successive observations.
We will also suppose that the number of states of mind which
need be taken into account is finite. [...] Let us imagine
the operations performed by the computer to split up into
"‘simple operations"’ which are so elementary that it is not

1This is a 1937 text.

easy to imagine them further divided. Every such operation
consists of some change of the physical system consisting of
the computer and his tape. [...] We may suppose that in a
simple operation not more than one symbol is altered. [...]
Besides these changes of symbols, the simple operations must
include changes of distribution of observed squares. The new
observed squares must be immediately recognizable by the
computer. I think it is reasonable to suppose that they can only
be squares whose distance from the closest of the immediately
previously observed square does not exceed a certain fixed
amount. [...] The operation actually performed is determined,
as has been suggested, by the state of mind of the computer
and the observed symbols. In particular, they determine the
state of mind of the computer after the operation is carried
out.

Definition 1: A Turing Machine is a quintuple M =
⟨k,Σ, δ, s, F ⟩ where [4]:

- k is the finite set of STATES;
- Σ is an ALPHABET which contains symbols ◃ and #, but

doesn’t contains → and ←;
- s ∈ k is the INITIAL STATE;
- F ⊆ k is the set of HALTING STATES;
- δ is a TRANSITION FUNCTION of k × Σ where: (a)

1) for all q ∈ (k−F), if δ(q,◃) = (p, b), then b =→;
2) for all q ∈ (k − F) and a ∈ Σ, a ̸= ◃, if δ(q, a) =

(p, b), then b ̸= ◃.
"

IV. RECURSIVE FUNCTIONS

One usual approach to define a mathematical function is the
recursive definition: some initial function values are defined
and the other ones are computed based on the priors. It is
essential to understand the recursive functions computational
model that is presented at this section. On the other hand,
the reader who is acquainted with this subject may proceed
to section VI without prejudice to the understanding of this
work.

The recursive definition method is used to characterize the
primitive recursive function class. First, some initial functions
are defined, whose simplicity suggests their unconditional
computability. These functions are described as follows [1][4]:

Successor: suc : N→ N, so that for all x ∈ N

suc(x) = x+ 1

Zero: zero : N→ N, so that for all x ∈ N

zero(x) = 0

Projection: for each n > 0 and each 1 ≤ i ≤ n, prn
i
: Nn →

N, so that for all xn =< x1, x2, · · · , xn >∈ Nn

prn
i
(xn) = xi

Subsequently, it is necessary to define a procedure respon-
sible for describing functions by using the previous ones
as support, on the early case, the initial functions. Assume
the functions f : Nm → N and g1, · · · , gm : Nn → N

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201439

exists. The composition h of f and g1, · · · , gm is the function
h : Nn → N, defined by [1][4]:

h(x1, · · · , xn) = f(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn))

The composition of a function f with other function g is
usually denoted by f ◦ g.

At last, let f : Nn → N and g : Nn+2 → N. It is said that
h : Nn+1 → N is defined by a primitive recursion if the h
values are obtained by [1][4]:

h(0, x1, · · · , xn) = f(x1, · · · , xn)
h(y + 1, x1, · · · , xn) = g(y, h(y, x1, · · · , xn), x1, · · · , xn)

The sum of natural numbers, for instance, can be defined
as follows:

0 + x = x
(y + 1) + x = (y + x) + 1

So, by taking: f = pr1
1
: N→ N and g = suc◦pr3

2
: N3 → N,

obtained by composition of the initial function, it is possible
to write:
h(0, x) = f(x) = pr1

1
(x)

h(y + 1, x) = g(y, h(y, x), x) = suc(pr3
2
(y, h(y, x), x))

Notice that for all x and all y, h(x, y) = x + y, therefore
h is the natural numbers addition. Moreover, h was obtained
by composition and primitive recursion based on the initial
functions. So, to calculate the sum of two numbers, such as 3
and 5, the computation is given by:

h(0, 5) = 5
h(1, 5) = suc(h(0, 5)) = suc(5) = 6
h(2, 5) = suc(h(1, 5)) = suc(6) = 7
h(3, 5) = suc(h(2, 5)) = suc(7) = 8

Therefore, a function f : Nn → N is primitive recursive if f
is a initial function or if it is obtained by using the composition
and the primitive recursion based on the initial functions.

In order to prove that a function f : Nn → N is primitive
recursive, it is sufficient to show its informal definition as the
one used for the sum. Thus, for example, the product of natural
numbers is defined by:

0.x = 0
(y + 1).x = y.x+ x

And there is no need to write
.(0, x) = zero(x)
.(y + 1, x) = +(pr3

2
(y, .(y, x), x), pr3

3
(y, .(y, x), x))

which is the strict formal definition using primitive recursion.
Nevertheless, not all functions define by recurrent schemes

are primitive recursive. As an example, assume the Ackermann
function [1][4]:

a.1 a(0, y) = y + 1
a.2 a(x+ 1, 0) = a(x, 1)
a.3 a(x+ 1, y + 1) = a(x, a(x+ 1, y))

Notice that this definition uses a recursion scheme, and that
for all naturals m and n it is always possible to compute
a(m,n). By computing a(1, 2) it is obtained the value 4, but
the definition of the Ackermann function is quite different from

the primitive recursive definition. It is interesting to observe
that the general recursion scheme may define functions that are
computable for a certain instances, but eventually they diverge.

A detailed study of general recursive schemes, which are
different from the recursive primitive recursion, is not the
purpose of this article. The existence of computable functions
defined by those schemes, and that the general recursive
schemes may define computable but divergent functions, sug-
gests that besides composition and primitive recursion, it is
necessary to define an additional functional scheme. This
need is fulfilled by the minimization scheme, responsible for
producing total functions.

Let f : Nn+1 → N be a total function. The h : Nn → N
is defined by minimization of f if and only if the values of h
are obtained by [13]:

h(x1, · · · , xn) =

⎧
⎨

⎩

y if f(y, x1, . . . ,) = 0 and if
∀i < y, f(i, x1, . . . , xn) ̸= 0

diverges otherwise

The minimization of f is denoted by:

h(x1, · · · , xn) = µy(f(y, x1, · · · , xn))

The function f : Nn → N is called partial recursive if
f is an initial function or if it is obtained by the usage of
composition, primitive recursion and minimization from the
initial functions. If f is also a total function, it is simply stated
that f is a recursive function.

V. THE GÖDEL β FUNCTIONS

The programming languages include certain programming
facilities in order to manipulate vectors, matrixes, etc. Like-
wise, the Gödel β functions are introduced as an mathematical
utility for manipulating tuples. This functions transform tuples
into natural numbers, and are also known as pairing functions.
Shall define the primitive recursive functions β : N2 → N,
1β2 : N→ N and 2β2 : N→ N by:

β(x, y) = x+ (x+y).(x+y+1)
2

1β2(β(x, y)) = x

2β2(β(x, y)) = y

The β function provides a linearization of the ordered pair
according to sequence of Fig. 2 such as it is performed
by space filling curves. Besides, the functions 1β2 and 2β2
implement the inverse operation of this linearization.

Figure 2. Gödel β pairing function.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 40

Let βr : Nr → N be inductivelly defined by:

β1(x) = x
β2(x1, x2) = β(x1, x2)

βk+1(x1, . . . , xk+1) = β(βk(x1, . . . , xk), xk+1), k ≥ 2
β̄(xm, y

n
) = < x1, . . . , xm, y1, . . . , yn >

VI. ABSTRACT FAMILY OF ALGORITHMS (AFA)

Each programming language is conceived to be applied to a
specific problem type, and for this reason, those programming
languages provide several features oriented to their purpose.
However, the Church-Turing Thesis states that all languages
are equivalent, and as a consequence, any kind of program-
ming language may reach a problem solution whatever is the
problem nature since this solution exists. In fact, an algorithm
may be implemented by several programming languages, and
as a result, all tasks resolved by the algorithm must also be
resolved by its implementations [2]. Hence, the programming
languages are materializations of algorithms, responsible for
computing functions.

An algorithm is a set of deterministic procedures which are
applied to a symbolic input class that eventually may result,
for each input, a symbolic output [1]. Note that an algorithm is
always finite even though it execution not necessary is finite.
This happens because the algorithm is a symbol string of an
alphabet Σ.

The set of all possible symbols combination, regardless the
generated string size, is known as Σ∗. So, this combination
produces non-meaning string, but it also produces the family
of all algorithms A describable by using alphabet Σ. Fig. 3
highlight that for each algorithm there is a natural number m
associated by a biunivocal relationship εA. The relationship εA
is a primitive recursive function that enumerates all the repre-
sentable algorithms using alphabet Σ, and so each algorithm
is indexed by a m ∈ N.

Figure 3. Relationships associated to an Abstract Family os Algorithms.

In addition, each algorithm A has a semantic meaning that is
the consequence of its execution, denoted by the operator | |. It
is the computation φ of an algorithm Am ∈ A, and ultimately,
it is the computation related to index m of an enumeration
because φm = |Am| = |εA(m)|.

An AFA, described by a language L with a finite alphabet
Σ, is an enumerable set where each algorithm is associated to
a natural number, its index, and a partial function. Given an
algorithm of this AFA, it is possible to obtain its index, and
given a natural number, it is possible to obtain the algorithm

associated to this index. For a given enumerable infinite alpha-
bet, the enumeration must bem more sophisticated, such as the
Gödel enumeration [5], based on prime numbers. However,
considering the programming languages, the finite alphabet
constrain is always applicable.

In spite of the biunivoque relationship εA, the relationship
| | allows the association between one element of f with more
than one element of A, which means that may exist more than
one algorithm capable to perform a unique task. This set f is
composed by partial recursive functions [3][4], that is, func-
tions built by using the initial functions, primitive recursive
functions, primitive recursion, minimization and repetition.

Definition 2 (Abstract Family of Algorithms): An AFA is
a triple φ =< A, εA, | | > where:
A: is an enumerable set of objects called algorithms.
εA: is an function of N in A called φ enumeration, where

εA(N) = A.
| |: is an function of A in NN called computation.

with the following properties:
P1 For all partial recursive functions φ, f : N→ N exits

m ∈ N where φm = |εA(m)|. When it is applied to
an string x, it is written φm(x);

P2 Exists a natural number uF which indexes φuF =
|εA(u)| where if x is an input data string of an
algorithm, then φuF (n, x) = φn(x);

P3 Exists a natural number cF which indexes φcF =
|εA(cF)| where if n and m are an input data string
of an algorithm, then φcF (n,m) = φn ◦ φm. When it
is applied to a string x, it is written φcF (n,m)(x) =
φn ◦ φm(x);

The property P1 indicates that all partial recursive functions
are computed by an algorithm from the AFA F indexed by
a natural number m. The property P2 is important because it
concerns to the universal function of F whose execution is
the appliance of the algorithm of index n for the input data
x. Note that the function φuF is associated to an algorithm
that executes algorithms, a meta-algorithm, sometimes called
universal algorithm. Despite this concept is special, the meta-
algorithms are not rare but quite common, such as compilers
and operating systems. Finally, the composition property P3

aims to obtain, from two programs φn and φm, a new program
φn◦m, and to accomplish this task it is necessary that the
function φcF provides an modification on φn and φm in such
way to avoid conflicts between the names of the variables and
others tags. Thus, it isolates the algorithm scopes, forbidding
their overlap.

The following theorem is known as the Parameterization
Theorem or the s-m-n Theorem [1][11][9], and it has a great
importance recursive functions theory. It reflects the possibility
of packing function arguments in order to obtain programs
that use the mechanism of argument passing to increase their
modularity and reduce their coupling.

Let a function φ with m + n arguments. Suppose that the
first m arguments are fixed and the other n arguments allowed
to change, resulting into a φ function with n arguments. The
index of this functions depends on the index of the original
function φ and the m arguments x1, . . . , xm.

exists. The composition h of f and g1, · · · , gm is the function
h : Nn → N, defined by [1][4]:

h(x1, · · · , xn) = f(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn))

The composition of a function f with other function g is
usually denoted by f ◦ g.

At last, let f : Nn → N and g : Nn+2 → N. It is said that
h : Nn+1 → N is defined by a primitive recursion if the h
values are obtained by [1][4]:

h(0, x1, · · · , xn) = f(x1, · · · , xn)
h(y + 1, x1, · · · , xn) = g(y, h(y, x1, · · · , xn), x1, · · · , xn)

The sum of natural numbers, for instance, can be defined
as follows:

0 + x = x
(y + 1) + x = (y + x) + 1

So, by taking: f = pr1
1
: N→ N and g = suc◦pr3

2
: N3 → N,

obtained by composition of the initial function, it is possible
to write:
h(0, x) = f(x) = pr1

1
(x)

h(y + 1, x) = g(y, h(y, x), x) = suc(pr3
2
(y, h(y, x), x))

Notice that for all x and all y, h(x, y) = x + y, therefore
h is the natural numbers addition. Moreover, h was obtained
by composition and primitive recursion based on the initial
functions. So, to calculate the sum of two numbers, such as 3
and 5, the computation is given by:

h(0, 5) = 5
h(1, 5) = suc(h(0, 5)) = suc(5) = 6
h(2, 5) = suc(h(1, 5)) = suc(6) = 7
h(3, 5) = suc(h(2, 5)) = suc(7) = 8

Therefore, a function f : Nn → N is primitive recursive if f
is a initial function or if it is obtained by using the composition
and the primitive recursion based on the initial functions.

In order to prove that a function f : Nn → N is primitive
recursive, it is sufficient to show its informal definition as the
one used for the sum. Thus, for example, the product of natural
numbers is defined by:

0.x = 0
(y + 1).x = y.x+ x

And there is no need to write
.(0, x) = zero(x)
.(y + 1, x) = +(pr3

2
(y, .(y, x), x), pr3

3
(y, .(y, x), x))

which is the strict formal definition using primitive recursion.
Nevertheless, not all functions define by recurrent schemes

are primitive recursive. As an example, assume the Ackermann
function [1][4]:

a.1 a(0, y) = y + 1
a.2 a(x+ 1, 0) = a(x, 1)
a.3 a(x+ 1, y + 1) = a(x, a(x+ 1, y))

Notice that this definition uses a recursion scheme, and that
for all naturals m and n it is always possible to compute
a(m,n). By computing a(1, 2) it is obtained the value 4, but
the definition of the Ackermann function is quite different from

the primitive recursive definition. It is interesting to observe
that the general recursion scheme may define functions that are
computable for a certain instances, but eventually they diverge.

A detailed study of general recursive schemes, which are
different from the recursive primitive recursion, is not the
purpose of this article. The existence of computable functions
defined by those schemes, and that the general recursive
schemes may define computable but divergent functions, sug-
gests that besides composition and primitive recursion, it is
necessary to define an additional functional scheme. This
need is fulfilled by the minimization scheme, responsible for
producing total functions.

Let f : Nn+1 → N be a total function. The h : Nn → N
is defined by minimization of f if and only if the values of h
are obtained by [13]:

h(x1, · · · , xn) =

⎧
⎨

⎩

y if f(y, x1, . . . ,) = 0 and if
∀i < y, f(i, x1, . . . , xn) ̸= 0

diverges otherwise

The minimization of f is denoted by:

h(x1, · · · , xn) = µy(f(y, x1, · · · , xn))

The function f : Nn → N is called partial recursive if
f is an initial function or if it is obtained by the usage of
composition, primitive recursion and minimization from the
initial functions. If f is also a total function, it is simply stated
that f is a recursive function.

V. THE GÖDEL β FUNCTIONS

The programming languages include certain programming
facilities in order to manipulate vectors, matrixes, etc. Like-
wise, the Gödel β functions are introduced as an mathematical
utility for manipulating tuples. This functions transform tuples
into natural numbers, and are also known as pairing functions.
Shall define the primitive recursive functions β : N2 → N,
1β2 : N→ N and 2β2 : N→ N by:

β(x, y) = x+ (x+y).(x+y+1)
2

1β2(β(x, y)) = x

2β2(β(x, y)) = y

The β function provides a linearization of the ordered pair
according to sequence of Fig. 2 such as it is performed
by space filling curves. Besides, the functions 1β2 and 2β2
implement the inverse operation of this linearization.

Figure 2. Gödel β pairing function.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201441

VII. RECURSION THEOREM

Let F =< A, εA, | | > be an AFA and f : N → N a total
recursive function which transforms a given algorithm. The
f specification states that when it is applied to an algorithm
index it results into a new index, and there is no need to
consider what is the new indexed algorithm. Suppose that
the function f applied to an index i maps a new index
f(i) associated to an algorithm εA(f(i)). A specific relevant
scenario occurs when an ordinary algorithm εA(j) computes
exactly the same partial recursive function φ that the algorithm
εA(f(i)) does, that is, |εA(f(i))| = |εA(j)|. In fact, it is
expected that there will be algorithm capable of executing the
same task, and also, there might be an unlimited relationships
of this kind.

Hence, the set of all algorithms that compute the same
partial recursive function φ is given by:

TF =
{
< i, j >∈ N2|φf(i) = φj

}

Theorem 3 (Fixed Point Theorem): The particular case
where the algorithm εA(f(i)) computation produces the same
function produced by εA(i) is a circunstance when it is said
that i ∈ N is a fixed point of φ [1][4], that is,

φf(i) = φi

A function fixed point is a value which remains unchanged,
even though the function is applied to it. Note that the self-
reference usage tends to be undesirable by the mathematical
logic, such as in the lair paradox. However, the self-reference
is important since the primitive recursion is based on it, that
is, it is based on function definition in terms of the same
functions.

The Recursion Theorem, as will be demonstrated in the fol-
lowing, is related to mathematical logic and self-reproducing
systems, that is, functions that produce functions, and fi-
nally, the theorem is correlated to the possibility of creat-
ing machines that constructs replicas of them. Usually, non-
researches of this subject have a huge resistance to accept
this possibility, mainly because they accept as a dogma that
machines cannot self-reproduce. This is clearly a mistake and
the reason will be explained.

The mistaken reasoning works as follows: first, consider the
matter of a machine be capable to produce another machine,
such as a microprocessors factory. Electronic supplies are
provided to this factory, it employs a robotic manufactory
according a pre-defined instruction set, and at the end of
the process it deploys a microprocessor. This factory must
be more complex than the produced microprocessors since
this factory needs to internalize not only the microprocessor
design, but also the governance project of all its robots. The
same reasoning might be used for a more abstract situation,
where a machine A constructs a machine B. Therefore, the
machine A must be more complex than the machine B.
Additionally, it is correct to assert that any machine cannot
be more complex than itself. Consequently, no machine can
construct itself, turning the self-reproduction an impossible
operation. Nevertheless, the Recursion Theorem refutes cat-
egorically this conclusion. The main explanation is because it

is wrong the argument that there is a relationship between the
ability of executing several functionalities and the possibility
of replicating these functionalities.

Theorem 4 (Recursion Theorem): Given an AFA and a re-
cursive function f , there is a natural number n where

φf(n) = φn

This theorem means that there is a natural number n
associated to a partial recursive function φ which submitted
to a function f produces as a result the same function φ.
Therefore, this procedure replicates the function φ.

In order to demonstrate this property, let n be a natural num-
ber and An an algorithm dependant on n with the following
specification:

1) Takes n as input and applies εA to it;
2) Selects the algorithm εA(n) from the AFA F to be used;
3) Computes εA(n) using the same entrance n, and so

obtainning |εA(n)| (n);

An =

⎧
⎨

⎩

|εA(|εA(n)| (n))| se |εA(n)| (n) converge

diverge se |εA(n)| (n) diverge

The classical Mathematics that ordinary function, when
submitted to an input, will always produce an output, no matter
what is this result. On the other hand, the Computability does
not share this security degrees with classical Mathematics. An
algorithm may receive a certain input and it may never stop
processing it, an issue known as the halting problem. Under
this point of view, the An specification needs to consider the
divergent situation into its definition.

The Fig. 5 shows the strategy An, as previously defined,
that will be used in order to demonstrate the theorem. The An

goal is to show that n is a fixed point of φn. To accomplish
this, it is necessary to choose the φ associated to n, compute
the result of φn(n), and then, it is essential to demonstrate
that this result remains unchanged when it is submitted to φn
again.

Figure 5. Recursion Theorem demonstrating strategy using the proposed
algorithm An.

The property P2 of the AFA F allows to say that:

|εA(n)| (n) = φuF (n, n)

which indicates that the meta-algorithm will provide the exe-
cution of the algorithm indexed by n and whose input will be
the string n. So, let n be a natural number submitted to the
execution stream of Fig. 5. Therefore:

Theorem 1 (s-m-n Theorem): For any acceptable
φ0,φ1, . . ., there is a total recursive function s : Nm+1 → N,
where for all values e, x1, . . . , xm, y1, . . . , yn, with m,n ≥ 1,
we have:

φs(e,x1,...,xm)(y1, . . . , yn) = φe(x1, . . . , xm, y1, . . . , yn)

By taking m = n = 1, it is obtained the s-m-n theorem in its
simple form,

φs(e,x)(y) = φe(x, y)

In order to demonstrate this theorem, let j, k ∈ N, such as
j, k ≥ 1, f and g primitive recursive functions defined as:

(i) f(k) = β̄(0, k)
(ii) g(β̄(j, k)) = β̄(j + 1, k)

As F is an AFA, there are indexes p and q for f and g, where
f = φFp and g = φFq . Let H be defined by:

H(0) = p
H(x+ 1) = q ◦H(x)

and so H is primitive recursive. First, it is necessary to
demonstrate by induction that φH(j)(k) = β̄(j, k).

• For j = 0

φH(0)(k) = φp(k) = f(k) = β̄(0, k)

• Now, suppose that the proposition is valid for j, that is:

φH(j)(k) = β̄(j, k)

So, we have:

φH(j+1)(k) = φq◦H(j)(k)
= φq ◦ φH(j)(k)
= g(φH(j)(k))
= g(β̄(j, k))
= β̄(j + 1, k)

Let k be the index of the function φk(β̄(β̄(xm), β̄(y
n
))) =

β̄m+n(xm, y
n
). We define s(e, β̄(xm)) = e ◦ k ◦H(β̄(xm)),

so:

φs(e,β̄(xm))(β̄(yn)) =

= φe ◦ φk ◦ φH(β̄(xm))(β̄(yn))
= φe ◦ φk(β̄(β̄(xm), β̄(y

n
)))

= φe(β̄m+n(xm, y
n
))

= φe(xm, y
n
)

This theorem claims that for a given program with m + n
input arguments, if m arguments are set to be fixed, than it
is possible to get a specialized new program with n input
arguments. For example, suppose an application designed to
attack cryptographic systems configured by m + n variables.
In this application, m arguments describe the cryptographic
protocol features such as key Exchange, authentication, signa-
ture, etc; and n arguments describe cryptographic techniques
such as key length, key manager, algorithm type, etc. The
first parameters specify the cryptographic agreement between
the actors of the process, and the parameters specify the
group of methods used to construct the cryptographic object.

If the application designed to attack cryptographic systems
is sold for an entity concerned to messages that use public-
key authentication cryptography, than the s-m-n Theorem
ensures that there is an specific instance of this application
that simulates the behavior of an attack against the public-
key authentication cryptography by simply instancing the
correspondent m parameters.

Another important theorem from the AFA is called Transla-
tion Theorem. It provides a relationship between two different
AFA.

Theorem 2 (Weak Translation Theorem): Given two ab-
stract algorithm families F e G there is a primitive recursive
function trGF , G → F such that for all m ∈ N:

φGm = φF
trGF (m)

Figure 4. Translation from G to F illustrating the Weak Translation Theorem.

The Fig. 4 illustrates that there is a transformation of an
indexed algorithm G whose image is an algorithm indexed on
F . In order to demonstrate the existence of this function trGF ,
keep in mind that as any AFA, G has an universal algorithm
indexed by uG which allows to say that φGuG (m,x) = φGm(x).
Moreover, it is important to remember that the AFA F
computes all computable recursive functions, including the
AFA G universal function. Thus, if k is the index of the
function φGuG in AFA F , it is defined trGF by:

trGF (y) = s(k, y)

where y is the index of the algorithm in G on which to find
its equivalent. So:

φF
trGF (m)

(x) = φFs(k,m)(x)

By using the s-m-n Theorem on φFs(k,m)(x) we have:

φF
trGF (m)

(x) = φFs(k,m)(x)

= φFk (m,x)
= φGuG (m,x)
= φGm(x)

The Weak Translation Theorem permits to associate one
AFA to another. It seems to be natural that this theorem
will be used at the next sections to qualify the relationship
between algorithms from two different abstract algorithm
families. Furthermore, it will be important to support some
considerations about Church-Turing Thesis.

One of the most important results for an Abstract Algorithm
Family is called the Recursion Theorem [1][6]. This theorem
will be presented in the next section.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 42

VII. RECURSION THEOREM

Let F =< A, εA, | | > be an AFA and f : N → N a total
recursive function which transforms a given algorithm. The
f specification states that when it is applied to an algorithm
index it results into a new index, and there is no need to
consider what is the new indexed algorithm. Suppose that
the function f applied to an index i maps a new index
f(i) associated to an algorithm εA(f(i)). A specific relevant
scenario occurs when an ordinary algorithm εA(j) computes
exactly the same partial recursive function φ that the algorithm
εA(f(i)) does, that is, |εA(f(i))| = |εA(j)|. In fact, it is
expected that there will be algorithm capable of executing the
same task, and also, there might be an unlimited relationships
of this kind.

Hence, the set of all algorithms that compute the same
partial recursive function φ is given by:

TF =
{
< i, j >∈ N2|φf(i) = φj

}

Theorem 3 (Fixed Point Theorem): The particular case
where the algorithm εA(f(i)) computation produces the same
function produced by εA(i) is a circunstance when it is said
that i ∈ N is a fixed point of φ [1][4], that is,

φf(i) = φi

A function fixed point is a value which remains unchanged,
even though the function is applied to it. Note that the self-
reference usage tends to be undesirable by the mathematical
logic, such as in the lair paradox. However, the self-reference
is important since the primitive recursion is based on it, that
is, it is based on function definition in terms of the same
functions.

The Recursion Theorem, as will be demonstrated in the fol-
lowing, is related to mathematical logic and self-reproducing
systems, that is, functions that produce functions, and fi-
nally, the theorem is correlated to the possibility of creat-
ing machines that constructs replicas of them. Usually, non-
researches of this subject have a huge resistance to accept
this possibility, mainly because they accept as a dogma that
machines cannot self-reproduce. This is clearly a mistake and
the reason will be explained.

The mistaken reasoning works as follows: first, consider the
matter of a machine be capable to produce another machine,
such as a microprocessors factory. Electronic supplies are
provided to this factory, it employs a robotic manufactory
according a pre-defined instruction set, and at the end of
the process it deploys a microprocessor. This factory must
be more complex than the produced microprocessors since
this factory needs to internalize not only the microprocessor
design, but also the governance project of all its robots. The
same reasoning might be used for a more abstract situation,
where a machine A constructs a machine B. Therefore, the
machine A must be more complex than the machine B.
Additionally, it is correct to assert that any machine cannot
be more complex than itself. Consequently, no machine can
construct itself, turning the self-reproduction an impossible
operation. Nevertheless, the Recursion Theorem refutes cat-
egorically this conclusion. The main explanation is because it

is wrong the argument that there is a relationship between the
ability of executing several functionalities and the possibility
of replicating these functionalities.

Theorem 4 (Recursion Theorem): Given an AFA and a re-
cursive function f , there is a natural number n where

φf(n) = φn

This theorem means that there is a natural number n
associated to a partial recursive function φ which submitted
to a function f produces as a result the same function φ.
Therefore, this procedure replicates the function φ.

In order to demonstrate this property, let n be a natural num-
ber and An an algorithm dependant on n with the following
specification:

1) Takes n as input and applies εA to it;
2) Selects the algorithm εA(n) from the AFA F to be used;
3) Computes εA(n) using the same entrance n, and so

obtainning |εA(n)| (n);

An =

⎧
⎨

⎩

|εA(|εA(n)| (n))| se |εA(n)| (n) converge

diverge se |εA(n)| (n) diverge

The classical Mathematics that ordinary function, when
submitted to an input, will always produce an output, no matter
what is this result. On the other hand, the Computability does
not share this security degrees with classical Mathematics. An
algorithm may receive a certain input and it may never stop
processing it, an issue known as the halting problem. Under
this point of view, the An specification needs to consider the
divergent situation into its definition.

The Fig. 5 shows the strategy An, as previously defined,
that will be used in order to demonstrate the theorem. The An

goal is to show that n is a fixed point of φn. To accomplish
this, it is necessary to choose the φ associated to n, compute
the result of φn(n), and then, it is essential to demonstrate
that this result remains unchanged when it is submitted to φn
again.

Figure 5. Recursion Theorem demonstrating strategy using the proposed
algorithm An.

The property P2 of the AFA F allows to say that:

|εA(n)| (n) = φuF (n, n)

which indicates that the meta-algorithm will provide the exe-
cution of the algorithm indexed by n and whose input will be
the string n. So, let n be a natural number submitted to the
execution stream of Fig. 5. Therefore:

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201443

|An| (y) = |εA(|εA(n)| (n))| (y)
= φuF (|εA(n)| (n), y)
= φuF (φu(n, n), y)

Let H be a function defined by:

H(n, y) = |An| (y) = φuF (φuF (n, n), y)

and let mH the index of H . Define g by:

g(n) = s(mH , n)

Then, performing the g substitution and by using s-m-n
Theorem in its simple form we have:

φg(n)(y) = φs(mH ,n)(y) = φmH (n, y) = H(n, y)

Let nf = g(cF (mf ,mg)) an ordinary natural number which
specifies a certain algorithm εA(nf), and c a composition
function that merges the machine index mf , proposed on
the theorem, and the machine mg . Computing this algorithm
εA(nf) for the entry y we obtain:

φnf (y) = φg(cF (mf ,mg))(y)
= H(cF (mf ,mg), y)
= φuF (φuF (cF (mf ,mg), cF (mf ,mg)), y)
= φuF (φcF (mf ,mg)(cF (mf ,mg)), y)
= φcF (mf ,mg)(cF (mf ,mg))(y)
= φf◦g(cF (mf ,mg))(y)
= φf(g(cF (mf ,mg)))(y)
= φf(nf)(y)

So nf = g(cF (mf ,mg)) = sF (mH , cF (mf ,mg)) is the fixed
point of φ.

The Recursion Theorem can be used to construct some
interesting recursive functions, such as the Self-replication
Theorem [15].

Theorem 5 (Self-replication Theorem): There is an algo-
rithm that prints its own description, given any input.

Define f by φf(x)(y) = x, that is, f(x) = s(e, x) where e
is an index for the projection function so that φf(x)(y) =
φs(e,x)(y) = φe(x, y) = pr2

1
(x, y) = x. Since f(x) is

recursive, by the Recursion Theorem there is a n such that
φf(n) = φn, hence φn(y) = φf(n)(y) = n.

The function φn is a function whose constant value is its
index n. The algorithm which computes φn always outputs
its own description. The word n is called a description of the
algorithm because the algorithm with index n is εA(n).

As a result, there is a natural number n associated to an AFA
F that once submitted to function f it produces, as a result,
the function φ. A computer virus and a computer worm [8]
are designed to replicate themselves among several computers.
These viruses are inactive when analyzed exclusively as block
of programming code. However, when deployed into a host, it
may become active and may start to transmit copies of itself to
other accessible computers. Consequently, with the purpose of
accomplishing its replicating task, the viruses contain the type
of scheme described at the Recursion Theorem demonstration
[10]. The quines are another variety of this kind of application
[9]. They are programs with no entry that produce copies of
themselves.

VIII. ISOMORPHISM THEOREM

In this section we will present some consequences of the:
Fixed Point Theorem, Translation Theorem and Recursion
Theorem. These issues will provide support to the main topic
called Isomorphism Theorem.

Let x1 ̸= x2 such that φGx1
(y) ̸= φGx2

(y). With the assistance
of the universal algorithm from the AFA G, it is possible to say
that φGuG (x1, y) ̸= φGuG (x2, y). Though, the universal algorithm
from G has an index k on AFA F . So:

φGuG (x1, y) ̸= φGuG (x1, y)
φFk (x1, y) ̸= φFk (x1, y)
φFs(k,x1)

(y) ̸= φFs(k,x2)
(y)

φF
trGF (x1)

(y) ̸= φF
trGF (x2)

(y)

If, for the same entry y two algorithm produce distinct com-
putations, then it is because these algorithm are also distinct,
and consequently are their indexes. Therefore, trGF (x1) ̸=
trGF (x2). If this happens and if x1 ̸= x2 then the function trGF
must be injective. For this reason, an injective triGF = trGF .

Theorem 6 (Strong Translation Theorem): Given two ab-
stract algorithm families F e G there is a primitive recursive
injective function triGF , G → F such that for all m ∈ N:

φGm = φF
triGF (m)

Moreover, pay attention to some features from a peculiar
function p called padding function. Its role is to add instruc-
tions to the algorithm without changing its functionality. At
first, it may seems to be useless under the traditional comput-
ing point of view, but this behavior occur in several everyday
forms. For instance, when a programmer add coments to his
programming code, the size of the text increases, and the
desired execution behavior is kept unchanged. So, the act
of documenting the source-code of a program is a padding
expression.

The current programming languages clearly prioritize the
usage of code interpretation (Java, PHP, IL from .Net, script
languages, ...), against code compilation. The main reason
is the benefits provided by the code portability. Though,
the side effect is that the interpreted code may easily be
decompilated. Notwithstanding, software developers are still
building interpreted application, distributing them through
download or physical medias. Under these circumstances, it
is critical to protect application source-code and intellectual
capital, no matter if this application is freeware, shareware,
or commercially licensed. The traditional cryptography is not
a solution for this problem, because it would prevent the
computer processor to have access to the program instructions.
Therefore, the cryptographic solution is the code obfuscation,
that is, to make the source-code less understandable for
a human by adding irrelevant and outwit instructions, but
keeping the functionality, exactly as the code padding.

The understanding of how the padding operates is better
comprehended by using Labeled Markov Algorithm language
[4],which will be summarized as follows.

Definition 3 (Labeled Markov Algorithm): A LMA with
an input Σ, or shortly a LMA in Σ, is a sequence of n > 0
expressions such as l : x→ y/l′, called commands, where:

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 44

• l and l′ are natural numbers, or their representation,
known as command labels and transferring labels, respec-
tively.

• x is a word from the alphabet, called command’ left.
• y is a word from the alphabet, called command’ right.

Additionally, for all i, 1 ≤ i ≤ n, the i command has the
i− 1 label.

As it is common on programming languages, the sequence
commands are separated by the symbol ;. Despite the data
do not belong to the LMA definition (there are no variables
or registers), the central point is to submit a Σ∗ string to the
LMA. The input string is transformed by the execution of the
LMA, and its output is a modified string. Let a LMA be εA(e)
and l : xl → yl/l′ a command from εA(e). It is defined the
function φe = |l : xl → yl/l′| with values given by:

|l : x→ y/l′|(w) =

⎧
⎨

⎩

subst(w, x, y) if x ≼ w

w if x ̸≼ w

where subst(w, x, y) is the substitution result of the first
occurrence of x in w for y, and x ≼ w means that x is a
substring from w.

The following sequence of commands is a LMA form from
an alphabet Σ:

0 : 0→ a/1;
1 : a1→ 1a/1;
2 : a2→ 2a/1;
3 : a→ 2/5;

Let w ∈ Σ∗. The command label 0 means: substitute the first
occurrence of the null word in w for a, that is, put the marker
a at the beginning of the word w and go to the execution of
command label 1. The command label 1 means: substitute the
first occurrence of the word a1 in w for 1a and execute again
the command label 1.

Intuitively, it is known that an algorithm may be imple-
mented into several different ways, even though theses differ-
ent implementations compute the same function. As the index
i from a function ϕi is given by the LMA enumeration εA(i)
that compute this function, in order to ensure the mapping to
infinite indexes, it sufficient to take εA(i) and add innocuous
commands to produce a new εA(i′).

Therefore, let p(e, x) be a padding function, recusive prim-
itive and injective, which concatenates the algorithm εA(e)
with an irrelevant algorithm εA(x). The concatenation opera-
tion may occur at the beginning ou at the end of the algorithm,
but it may also more sophisticated and intercalate patches of
algorithm εA(e) with patches from εA(x). Whatever the case,
we have φp(e,x) = φe and if p(e, x) = p(e, y) then it is because
x = y.

The main idea is to concatenate the useless commands from
algorithm εA(x) with the LMA algorithm indexe. So, if εA(e)
is the LMA:

εA(e) =

⎧
⎪⎪⎨

⎪⎪⎩

0 : x0 → y0/l0;
1 : x1 → y1/l1;
. . .
k : xk → yk/lk;

Let x be the index of the program:

εA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 : 0→ 0/1;
1 : 0→ 0/2;
. . .
y : 0→ 0/y + 1;

The LMA εA(p(e, x)) is the LMA:

εA(p(e, x))

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : 0→ 0/1;
1 : 0→ 0/2;
. . .
y : 0→ 0/y + 1;
y + 1 : x0 → y0/l0;
y + 2 : x1 → y1/l1;
. . .
y + k + 1 : xk → yk/lk;

Then, the program created by the concatenation is the com-
position of the programs indexes x e e, and so it is sufficient
to take p(e, x) = cF (e, x), because then:

φp(e,x) = φcF (e,x) = φe

Remembering that by definition the function p is injective.
Let F and G be two abstract algorithm families. Then, there

is a recursive function triasFG such that for all x ∈ N:

φG
trisGF (x)

= φFx

and additionally:

0 < trisGF (x) < trisGF (x+ 1)

In order to make this happens, it is necessary to translate
each program x and then add superfluous commands until the
desired length is obtained. Note that this feature from function
trisGF allows to state that for all algorithm from A, there is a
natural number x ∈ N such that this algorithm is determined
by εA(x), characterizing a surjection.

Finally, it is possible to present the Isomorphism Theorem
[1][4], which ensures a bijective mapping between abstarct
algorithm families, that is, all abstract algorithm families are
equivalent. The Isomorphism Theorem shows not only two
acceptable algorithms might be ttranslated from one to another,
but also that there is a one-to-one translating between these
two acceptable algorithms.

Theorem 7 (Isomorphism Theorem): Let F and G be two
abstract algorithm families. If the translation fuction is injec-
tive and surjective then there is a bijective recursive function
trbGF such that for all x ∈ N:

φG
trbGF (x)

= φFx

The demonstration os this theorem involves the usage of the
function tris, and it is presented a more complete adaptation
from the one described by Machtey e Young [16]. As it was
studied, this function is injective, that is, distinct indexes i and
j from G, are mapped through translation into distinct indexes
from F . This function is also surjective because all indexes
from F are translation images from a index in G.

Note that trisGF , by construction, is monotonically increas-
ing. Thus, given a natural number x, the composition result

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201445

trisFG ◦ trisGF produces a numerical value greater than x, that
is, trisFG (tris

G
F (x)) > x. Once the function tris is based on

padding we have that x < trisGF (x) < trisFG (tris
G
F (x)). Con-

sequently, the inverse translation functions must be monoton-
ically decreasing. Therefore, we define the inverse functions
s∗ e t∗ by (see Fig. 6):

s∗(x) =

{
y if exists y such that trisGF (y) = x

0 otherwise

t∗(x) =

{
y if exists y such that trisFG (y) = x

0 otherwise

Figure 6. The inverse functions s∗ e t∗ associated to the translations between
F and G.

Given an index x from AFA F , it is possible to define a
sequence:

Ix = {x, s∗(x), t∗ ◦ s∗(x), s∗ ◦ t∗ ◦ s∗(x) · · · }

As s∗ and t∗ are strictly decreasing (see Fig. 7), this sequence
has, at most, x+1 elements, and also, the last value is always
0, that is, for some l ∈ N:

1) the sequence ends on F , and then (t∗ ◦ s∗)l(x) = 0, or
2) the sequence ends on G, and then s∗ ◦ (t∗ ◦ s∗)l(x) = 0.

Figure 7. The s∗’s and t∗’s strictly decreasing sequences converging to 0
as the last value.

The dot line from Fig. 7 indicates that the sequence ends in
F according to one of the options:

- trisFG (0) = (t∗ ◦ s∗)l(x), or;
- ̸ ∃y in F such that trisFG (y) = (t∗ ◦ s∗)l(x).

Analogously, note that a sequence ends on G according two
situations:

- trisGF (0) = s∗ ◦ (t∗ ◦ s∗)l−1(x), or;
- ̸ ∃y in G such that trisFG (y) = s∗ ◦ (t∗ ◦ s∗)l−1(x).

Lets define the function:

termG(x) =
{

1 if Ix ends on G
0 if Ix ends on F

And the function:

trbGF (x) =

{
trisGF (x) if termG(x) = 1

t∗(x) if termG(x) = 0

Hence, it is expected to prove that trbGF is the desired
translation function. Let x be an index from G:

1) if termG(x)=1 then φG
trbGF (x)

=φG
trisGF (x)

=φFx

2) if termG(x)=0 then φG
trbGF (x)

=φGt∗(x)=φ
F
trisFG (t∗(x))

=

φFx
In both cases φG

trbGF (x)
= φFx . Finally, it is necessary to prove

that trbGF is bijective.
1) trbGF is injective: let x, y ∈ N such that trbGF (x) =

trbGF (y). Then it is mandatory that termG(x) =
termG(y):

a) If termG(x) = 1 then trisGF (x) = trisGF (y) thus,
x = y;

b) If termG(x) = 0 then s∗(x) = s∗(y) thus, x = y;
2) trbGF is surjective: let y be an index from F , then there

is an index x from G such that trbGF (x) = y, because
analysing trisGF (y), it is verified that:

a) if termG(trisGF (y)) = 1 then x = s∗(y) once that,
in this case, y = trisFG (x) = trbFG (x);

b) if termG(trisGF (y)) = 0 then x = trisGF (y) once
that, in this case, y = t∗(trisGF (y)) = trbGF (x);

The importance of this theorem is a reinforcement to
Church-Turing Thesis, whatever computer model with the
three basic properties (P1, P2, P3), even possessing supposedly
more powerful properties, is recursively isomorphic to the
already known models. This result is important because it pro-
vides a convincing argument to whatever particular computing
model is choosen. The Isomorphism Theorem states that all
abstract algorithm families as equivalent, and that there do
exists an effective and bijective translation function between
them.

Note that the Cryptography studies the artifices responsible
for transforming the information from its plaintext form into
a ciphered form, comprehensible by a select group of people.
The evaluation of the ciphered message provides the infor-
mative content. The results of the cryptographic techniques
implementation comprise some kind of computation, such as
the operator | |.

On the other hand, the Linguistics is the study of the
language, that is, the schemes used by mankind to comprehend
its ideas and feelings (the authors are consciously avoiding
the word "communicate" because the Pêcheux [17] concept of
imaginary formation). This comprehension is a consequence
of carrying out several human abilities that are associated to
an operator of semantic meaning, again, just like the operator
| |.

Therefore, it is possible to incorporate these two points of
view because both of them study principles and techniques
which define a set of functions whose ultimate objective is to
perform an evaluation, such as the algorithms.

By an AFA we mean a denumerable set of undefined objects
called algorithms, each of which has associated with exactly
one partial n-variable function for each positive integer n.
Consequently, we claim that that Linguistics and Cryptography
are associated to two different abstract families of algorithms.
Moreover, the Isomorphism Theorem provides support to
assert that the Linguistics and Cryptography set of objects
are equivalent. Thus, a computable function, whose results

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 46

are acceptable by one study approach, might be successfully
used on the other knowledge area. Undoubtedly, an algorithm
εGA(n) from one knowledge area does not need to be the same
one from the other area. However, there do exists an analo-
gous algorithm on the other family, εFA(n), and the mapping
between them is performed by the translation function trbGF ,
even though this translation might be unknown.

Hence, it seems to be reasonable to use computational
linguistics and modern information retrieval to perform cryp-
tographic analysis, not only to recover the informative content
of a ciphered message, but also to locate features about the
cryptographic key and the type of algorithm used for encryp-
tion. Alternatively, the Linguistic comparative method and the
pragmatic factors study can be enhanced by Cryptography
quantitative and qualitative analysis algorithms.

IX. CONCLUSIONS

This article has presented several remarks about how recur-
sive functions computability study can be directly associated
to Cryptography themes. In order to accomplish this task, the
abstract family of algorithms theory was revised producing
a different approach from the ones currently available in
literature. The Isomorphism Theorem demonstration provides
the technical support for a comparison between two AFA,
establishing a connection between Cryptology and Linguistics.

Further studies on this matter include, but not restricted
to, a research on cryptogram patterns associated to the keys
used on AES and RSA. It also seems to be possible to use
corpora techniques to group cryptographic texts according to
their cipher keys.

REFERENCES

[1] Hartley Rogers Jr. Theory of Recursive Functions and Effective Com-
putability, 1st ed, McGraw-Hill Book Company, 1967.

[2] Roberto Lins de Carvalho. Máquinas, Programas e Algoritmos, 2a Escola
de Computação, Campinas, Universidade Estadual de Campinas, 1981.

[3] Yu I. Manin. A Course in Mathematical Logic, 1st ed, Graduate Texts in
Mathematics 53, Springer-Verlag, 1977.

[4] Claudia Maria Garcia Medeiros de Oliveira and Roberto Lins de Carvalho.
Modelos de Computação e Sistemas Formais, 11a Escola de Computação,
Rio de Janeiro, Universidade Federal do Rio de Janeiro, 1998.

[5] Elliott Mendelson. Introduction to Mathematical Logic, 3rd ed, Cole
Mathematics Series, The Wadsworth and Brooks, 1987.

[6] Michael Sipser. Introduction to The Theory of Computation, 2rd ed,
Course Technology Series, Thomson, 2006.

[7] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Language and Computation. USA, Addison-Wesley Publishing Company,
1979

[8] Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryp-
tovirology, John Wiley and Sons Inc., 2004.

[9] Nigel J. Cutland. Computability: An introduction to recursive function
theory, Cambridge University Press, 1980.

[10] Guillaume Bonfante and Matthieu Kaczmarek and Jean-Yves Marion. A
Classification of Viruses through Recursion Theorems, CiE 2007, volume
4497 of Lecture Notes in Computer Science, 2007.

[11] Steven Homer and Alan L. Selman. Computability and Complexity
Theory, Texts in Computer Science, 2nd ed, Springer, 2011.

[12] Alan M. Turing. The Undecidable, chapter On Computable Numbers
with an Application to the Entscheidungsproblem, pages 115-151. Raven
Press, New York, 1965.

[13] R. J. Nelson. Introduction to Automata, John Wiley and Sons, Inc., USA,
1965.

[14] Frederick C. Hennie. Introduction to Computability, Series in Computer
Science and Information Processing, Addison-Wesley, Reading, Mas-
sachusets, USA, 1977.

[15] Walter S. Brainerd and Lawrence H. Landweber. Theory of Computation,
John Wiley and Sons, 1974.

[16] Michael Machtey and Paul Young. An Introduction to the General
Theory of Algorithms, Theory of Computation Series, Elsevier North
Holland Inc., 1978.

[17] Michel Pêcheux. Análise Automática do Discurso, In: Por uma Análise
Automática do Discurso, Editors: Françoise Gadet and Tony Hak, Editora
Unicamp, 3.ed., 1997.

Roberto Lins de Carvalho did his PhD. on in-
formatics at University of Toronto (1974), MSc.
on informatics at Pontifical Catholic University of
Rio de Janeiro - PUC Rio (1969), under graduation
on telecommunication engineering at Military Engi-
neering Institute - IME (1967) and under graduation
military studies at Military Academy of Agulhas
Negras - AMAN (1961). Lectured at Pontifical
Catholic University of Rio de Janeiro, Campinas
University, Fluminense Federal University, Aeronau-
tics Technological Institute and Military Engineering

Institute, where supervised several master dissertations and doctoral thesis on
theorem proving, knowledge base systems and knowledge representation. Over
fourteen years is the leader of Witty Group coaching artificial intelligence
computer applications and is retired from Scientific Computing Brazilian
National Laboratory - LNCC.

Flávio Luis de Mello did his DSc. on theory of
computation and image processing at the Federal
University of Rio de Janeiro - UFRJ (2006), MSc. on
computer graphics at Federal University of Rio de
Janeiro - UFRJ (2003), under graduation on systems
engineering at Military Engineering Institute - IME
(1998). Developed command and control systems
and implemented military messages interchange ap-
plications during twelve years as Brazilian Army
officer. Responsible for developing software appli-
cations based on theorem proving, knowledge base

systems and knowledge representation from Witty Group. Associate Professor
at the Electronics and Computing Department (DEL) of Polytechnic School
(Poli) at Federal University of Rio de Janeiro (UFRJ) since 2007.

