
ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 32

Abstract— �Conventional measures do not sufficiently protect

computing systems anymore against intruders and malware of any

kind. The main reason for this is that the system architectures are

based on highly insecure and error-prone foundations. Whereas

some time ago this shortcoming could still be partially coped with

by swift counteraction, today this “race” must be considered lost

right from the start due to the fast data networks. There are no

reactive measures anymore that could compensate for the

aggressors' temporal advantage. Since computers employed for

automation and control purposes are more and more connected to

networks and are, thus, endangered by malware, new architectures

for their hardware and software as presented in this paper are

necessary, which solve the security problems by their intrinsic

properties.

Keywords— Computer control, automation, safety-related
control, security, malware, intrusion prevention, hardware-based
security measures.

I. INTRODUCTION
T has become fashionable to employ even for safety-related
tasks in automation technology computers whose hardware

and software are neither secure against intruders nor able to
provide acceptable real-time performance. Thus, to avoid
conversions and to minimise times necessary to become
acquainted with adequate industrial systems, more and more
automation applications are implemented on the basis of cheap
PCs as control computers and the popular Windows operating
systems. As such computers are swamped with attacks for
already some time now, there is a considerable risk also for
industrial computing systems to be infected by malware like,
for instance, Stuxnet [6] and, thus, to become unsafe. This is
exacerbated by the presence of almost any enterprise in the
Internet, and since firewalls are unable to protect the intranets
of enterprises against external attacks.

Primarily the fast, high-capacity global communication
networks and the monoculture in hardware and software
technology has led to this situation, which favours the swift
spreading of malware. When an electronic intruder was
detected in former years, the companies dealing with
counteracting them usually had sufficient time to update their
products. Owing to the fact that customary software products
can provide just a certain degree of protection against already
known and analysed electronic malware, most computers are
defenceless in the hands of new, not yet sufficiently analysed
destructive programs. As there are some tens of thousands
new ones of such programs every day according to studies of

R. Fitz, Hochschule für Angewandte Wissenschaften Hamburg, Germany,

robert.fitz@haw-hamburg.de
W. A. Halang, Fernuniversität in Hagen, Germany,

wolfgang.halang@fernuni-hagen.de

Bundesamt für Sicherheit in der Informationstechnik (German
Federal Agency for Security in Information Technology) [1],
some experts now recommend to update the installed
“antivirus software” already on an hourly basis, in order to be
able to provide, at least, a certain “basic level of protection”.

Due to the system homogeneity mentioned above and the
increased speed of the proliferation of malware, by now it is a
generally accepted fact that trying to warrant security with
malware detection programs and firewalls is not an adequate
solution anymore. Hence, the security problem must be solved
in a fundamentally different way by appropriate architectures
of hardware and software. To this end, constructive security
measures are presented in this article, which render the virus
problem manageable and, thus, contribute to the ultimate
solution of this kind of security problems. The feasibility of
building systems which can match the contemporary potential
of threat will be shown constructively. Moreover, it turns out
that such systems can even be maintained more easily as well
as can provide higher performance and greater robustness as
the automation systems presently prevailing.

An analysis of the various intruders, particularly in form of
programs and executable Internet content with malicious
intentions, reveals that they are based on some common
principles of operation. If these operation principles are
thwarted by appropriate measures, malware is prevented from
spreading and from launching its destructive effects. The
security measures presented in the sequel disable the operation
principles of all known malevolent programs in an effective
way. In developing them, great importance was attached to the
presented solutions being simple and easy to duplicate, in
order to be understood and applied without any problems by
the users of computers, as unnecessary complexity is the
enemy of any effort towards enhancing security.

Recently discussed approaches based on cryptography can
be ruled out because of their lacking verifiability and
unnecessary complexity, in particular for use in automation
technology. Their benefit for the users in improving the
security of conventional systems is very doubtful in
consideration of the fact that there is no practically applicable
cryptographic method known which could not be deciphered
by attackers – let alone the costs incurred and the performance
absorbed by encoding and decoding data. Moreover, in the
past experience has shown that cryptographic solutions
provoke playfulness, and even persons without malicious
intentions feel urged to decipher systems protected this way: a
kind of competition or popular sport has emerged.

R. Fitz and W. A. Halang

Securing Automation Systems Against
Malware Intrusion

I

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201433

II. MEMORY SEGMENTATION
Software with malicious intentions often interferes with

application programs or even with operating system routines
in order to manipulate them for its destructive purpose or to
deactivate software-implemented security functions. Here a
memory segmentation measure as developed in [2] takes
effect. It reliably prevents unauthorized accesses to the storage
areas of operating system and application programs. To this
end, a hardware-supervised segmentation of memory is
introduced, which protects programs against modifications not
permitted. The mass storage of a computing system must,
accordingly, be partitioned into at least two segments. At least
one of these segments has to be provided with a hardware-
implemented write-protection to allow for the storage of
safety-related programs and data such as operating system,
utility programs and their databases, or fixed nominal values
for operation and devices whose failure to be met could lead to
the destructions of devices. As shown in Fig. 1, in further
segments not protected this way data are stored which,
according to experience, are subject to frequent changes. At
the same time, these segments can be used to test programs.
This protection needs to be ensured throughout all storage
levels.

Figure 1. Hardware-supervised segmentation of memory.

The more than half a century old and still predominant Von
Neumann architecture with its minimalistic principles is
totally inadequate for systems that need to be safe and secure,
as it does not separate data from instructions and, thus, does
not permit to protect both kinds of information in an optimum
way (see Fig. 2).

Figure 2. Von Neumann architecture.

The Harvard architecture (see Fig. 3), on the other hand,
provides this separation throughout and, therefore, represents
an adequate construction principle. It is a pleasant side-effect
that systems based on this architecture are faster than the
currently prevailing ones.

Figure 3. Harvard architecture.

III. CONTEXT-SENSITIVE MEMORY ALLOCATION
In contrast to programs, data are subject to frequent

modifications. Therefore, a hardware-implemented write-
protection as in [2] is not feasible for reasons of handling.
Data can be protected against programs for spying out and
modification, however, by a context-sensitive memory
allocation according to [3], as shown in Fig. 4. Applying this
measure, any unauthorised access to data is precluded. To this
end, a system's mass storage, in particular the data area, is
further subdivided by a partitioning into context-dependent
segments. In an installation mode it is precisely specified
which accesses to these segments are permitted to the
programs. This is oriented at the data to be protected and not
the programs, i.e. in general to each program there exist
several data segments separated from one another.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 34

Figure 4. Context-sensitive memory allocation.

In other words, this method is characterised by permitting
memory references to any application program and operating
system service only by means of using access functions write-
protected by hardware, which release the storage areas
required for the respective application case for writing and
reading or just for reading accesses. Accordingly, in a
hardware-protected installation mode the users must establish
for any program at least one access function, if they want to
use this program in the application mode. As the protection
mechanism shall not hinder the users in their daily work and,
in particular, shall not hamper the systems' real-time
behaviour, the bounds of the memory segments assigned to the
different access functions are, for instance, stored in write-
protected electrically erasable programmable read only
memories (EEPROM), and loaded from there to control
accesses to mass storage. Not all admissible memory areas are
masked. It suffices to merely supervise the address lines and to
control the write or read signals, respectively, of the mass
storage media. If an access not permitted is requested, the
processor is halted and a signal is generated, which allows the
user to uniquely identify the incorrectly working program. For
especially endangered programs a variety of access functions
should be provided in order to keep the effects of infection by
malware as low as possible. Electronic requests arriving from
the outside, for instance, always ought to be placed first with
their attachments, if any, in a separate and enclosed data area,
and processed there.

This way, a spying or modification program that has
infiltrated into a data segment without permission can be

denied to spread to other segments leaving possible damage
narrowly bounded. Based on the segmentation measures
presented, a protection against unnoticed modification of data
within such a segment can reliably be implemented by already
established redundancy measures. Moreover, a finely
structured segmentation also protects well against the negative
effects of common programming errors, and provides a basis
for lucid system maintenance.

IV. HARDWARE-IMPLEMENTED COUPLING OF
WRITE-PROTECTION TO AUTHENTIFICATION AND

AUTHENTIFICATION-DEPENDENT VIRTUAL
ADDRESS SPACE

In order not to endanger the advantages of memory areas
write-protected by hardware measures during the installation
phases of programs, and to ensure separation on all storage
levels throughout, it is necessary to accommodate service
programs and their databases also in areas write-protected by
hardware and separated from the program area. In doing so, it
must be prevented that program and service areas are enabled
for writing at the same time, and the memory management
must be extended in such a way that the virtual addresses can
be used to supervise the computer, since such addresses are
linear and, thus, much easier to observe. This is achieved by
utilising a hardware device according to [4] generating a write
enable signal, which inherently prevents that more than one
such signal is generated at a given instant. For this it is
necessary to ensure a unique and safe authentification of the
user, which is dependent on this person's momentary function,
and by means of which the access rights required for the
computer's protection are selected. This implies that these
systems do not designate omnipotent administrators with
rights, which cannot be controlled or are extremely difficult to
protect, as they always proved to be a considerable weakness
in a vast number of systems under different operating systems.
Therefore, almost all attackers seek to gain administrator
rights, in order to exercise complete control over a system.
This possibility is constructively excluded in the here
presented solution, since there is a kind of self-supervision of
the correspondingly structured systems at any point in time.
Expressed more precisely, hardware-protected and, thus, by
software not attackable components of these systems control
the respective other parts, even in installation phases. Suitable
for user authentification are those methods which cannot be
influenced by programs and which are, for instance, based on
personal property or biometrical features. To supervise the
address space of a computer, safe virtual addresses dependent
on authentification and start addresses of page directories are
used. The memory management unit is placed between
storage and processor to protect the former against direct
access by the processor. The unit is equipped with a hardware-
implemented protection mechanism, which transmits the
required programming signals of the processor in case of
correspondingly privileged authentification, only.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 201435

V. DISCLOSURE OF REQUIRED RESOURCES
Destructive programs and software-based aggression from

the Internet often use components of digital systems, which
they would not need for their feigned nominal functions. Here
the hardware-supported security measure detailed in [5] takes
effect. For instance, for program modules responsible to
receive electronic mail the access to communication
components must be permitted, but not for those modules
which display or even interpret the messages received. This
example makes clear that to fulfill their nominal function
programs do not need many of the available resources at all or,
at least, not all the time, and that permanent release of all
resources represents an irresponsible security risk, particularly
as common programming errors without malicious intentions
cannot be precluded for complex software. On the other hand,
users cannot be expected to disable resources on a case by
case basis, especially not for automation systems for which
this is not possible at all. Therefore, measures need to be
devised which protect the users, but do not unduely trouble or
restrict them.

All these problems can be solved if any program, any
interpretable file and any executable Internet content first
discloses which resources it requires for execution. The
disclosure of a program's nominal functions enables to install
boundary values for systems and to supervise their operation
in an effective way. By this supervision and, at any point in
time, by locking all resources not needed at that time by means
of hardware as shown in Fig. 5, it can be safely warranted that
the desired nominal functionality is observed.

Figure 5. Hardware-controlled resources.

For, in installation modes, during which application
software may not access processors, memory nor
communication equipment, the users set the limits for resource
accesses. Only after that it is possible to execute application
programs under permanent hardware-supported supervision
based on the constraints defined before. Hereby, not only the
resource accesses are supervised, but also the execution times.
Thus, the real-time capability is guaranteed. As a positive
side-effect, this approach also prevents, up to a certain degree,
damage caused by common programming errors without
malevolent intentions. Upon deviation from its required
nominal function the corresponding program is aborted. All
resources seized before are reset and released again. This has
the advantage that another program can immediately be put in
execution after an illicit action, i.e. the system remains
available.

The here presented methods solve the problem of
executable Internet contents as well, which is currently of
extreme urgency. For, executable Internet contents can be
considered as programs for potential spying out and
modification, whose program code resides on remote
computers. To cope with them, the following procedure is to
be adhered to.

x Before a program stored on a different, remotely
located computer may become active, it must first
provide information about its nominal
functionality and the resources required for this.

x If the intended activities are considered uncritical,
the execution is initiated without asking the users
unnecessary questions. What hereby is regarded as
uncritical was defined before by the respective
users themselves, and stored in an area write-
protected by hardware. Since a program's alleged
activities are securely supervised in any case, the
credibility of communication partners is not of
such a decisive importance for a computer's
security as it is the case for the currently
prevailing solutions. Confidential information as
exchanged, for instance, in electronic commerce is
secured and encrypted for transmission here as
well.

x If the data disclosed indicate critical functions, the
further proceeding depends on whether there is
already a certain trust in the source of the data, and
which actions were permitted to it. In case the
actions requested are within the framework
already authorised, also here there is no feedback
to the users. If the range of actions of an
application or a data source is to be extended, first
the users disconnect the communication links to
extend the conceded framework of actions, and
resume the connection to the communication
partners not before the supervisor data and all
resources not required have been hardware-
protected against unauthorised access.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 36

This solution by far outperforms established methods such
as, for instance, the trust-based one of “ActiveX” or the
“sandbox” method of “Java”, as decisions can be made on the
basis of a much finer granularity, without imposing on the
users unreasonable restrictions or urge them to admit
everything.

VI. CONCLUSION
To be secure, automation systems must fulfill the following

requirements.
x Data and instructions have to be separated

throughout.
x Authentifications may not be influenceable by

software.
x Protection systems may not be attackable

themselves. This means that their implementation
must be proven correct and safely protected
against modifications not permitted.

x The protection of systems may not be put out of
effect during the installation phases of application
programs or of operating system components as
well.

x All storage levels (main memory, mass storage etc.)
have to be protected throughout against
unauthorised accesses by means of
authentification-dependent virtual address spaces.

x Constraints and nominal functionalities of programs
are defined in installation phases, and permanently
supervised in the course of operation. Their
observance is guaranteed even under real-time
conditions.

x To protect data against effects of common program
errors or malicious interpretable files and to enable
context-sensitive memory allocation, a means for
the instantiation of programs must be provided,
which employs access functions.

Utilising the presented measures industrial computer
control systems are effectively protected against inadmissible
accesses. This holds in particular for still unknown attack
patterns or malware, too, because there is no more need for
databases of malicious code or attack prototypes, which
become obsolete within hours anyway due to the swift
spreading of current malware via the Internet. It has been
shown that it is possible to build systems which are immune
against intruders and espionage. In addition, it was shown that
separation and structuring considerably facilitates the
maintainability of computer control systems, too, and even
increases their performance. Furthermore, it became clear that
systems protected by the above mentioned measures exhibit,
on the basis of disclosing their nominal functions, of the
permanent supervision against set bounds, of the context-
sensitive allocation of data and of the impossibility to attack
operating systems and application programs, a degree of
robustness which allows them to maintain their functionality
despite some failing application programs – a property being
of fundamental importance for automation systems and highly
safety-critical applications.

The measures presented here guarantee, with reference to
[7], the observance of the protection objectives

1. Privacy: unauthorised gain of information is made
impossible, i.e. spying out of data is obviated,

2. Integrity: unauthorised modification of information
is precluded,

3. Availability: unauthorised influence on the
functionality is precluded and

4. Attributability: at any point in time the responsible
persons can be identified with certainty.

REFERENCES
[1] “Der Schädlings-Flut Herr werden”, Bundeswehr aktuell, 48(4)5,

30 January 2012, on-line: s337251796.online.de/2012/KW4/html/
10005.html

[2] W.A. Halang and R. Fitz, “Speichersegmentierung in Datenverarbei-
tungsanlagen zum Schutz vor unbefugtem Eindringen”, German patent
registration DE10031212A1, 2000

[3] W.A. Halang and R. Fitz, “Kontextsensitive Speicherzuordnung in
Datenverarbeitungsanlagen zum Schutz vor unbefugtem Ausspähen
und Manipulieren von Daten”, German patent registration
DE10031209A1, 2000

[4] W.A. Halang and R. Fitz, “Gerätetechnische Schreibschutzkopplung
zum Schutz digitaler Datenverarbeitungsanlagen vor Eindringlingen
während der Installationsphase von Programmen”, German patent
10051941 since 20 October 2000

[5] W.A. Halang and R. Fitz: “Offenbarendes Verfahren zur Überwachung
ausführbarer oder interpretierbarer Daten in digitalen Datenverarbei-
tungsanlagen mittels gerätetechnischer Einrichtungen. German patent
registration DE10055118A1, 2000

[6] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon”, IEEE
Security & Privacy, 9(3)49–51, 2011

[7] K. Rannenberg, A. Pfitzmann and G. Müller, “Sicherheit, insbesondere
mehrseitige IT-Sicherheit”, in: Mehrseitige Sicherheit in der
Kommunikationstechnik, pp. 21–29, Bonn: Addison-Wesley 1997.

Robert Fitz, born 1965 in Villingen-Schwenningen,
Germany, received BSc and MSc degrees in electronic
engineering in 1988 and 1999, respectively, and was awarded
Dr.-Ing. in electrical and computer engineering in 2001. After
working in industry and academia, he was appointed
professor of electronic engineering and computer science in
2002. His current research interests are systems on chip as

well as availability and security of data processing systems.

Wolfgang A. Halang, born 1951 in Essen, Germany,
received doctorates in mathematics (1976) and computer
science (1980). After working in industry and academia, he
was appointed chair of computer engineering and department
head at the University of Groningen in the Netherlands, and
1992 at Fernuniversität in Hagen. He was co-director of the
1992 NATO Advanced Study Institute on Real-Time

Computing and visiting professor in Maribor, Slovenia, and Rome, founded
the journal Real-Time Systems, is member of four further journals' editorial
boards, (co-)authored 40 books and 400 refereed publications, holds 20
patents, gave 80 guest lectures worldwide, and is active in various technical
committees and 240 programme committees.

